

 INTERNET OF THINGS

 # LECTURE-1

 INTRODUCTION AND CONCEPT OF INTERNET OF THINGS

 MODULE-I

Internet of Things (IoT)

Introduction
 Internet of Things (IoT) consists of things which have unique identities and

they are connected to Internet. Some devices which have already been exist; those

are computer networking, 4G-enabled smart mobile phones, have unique identities

and are connected to the Internet.

What is Internet of Things (IoT)?

Internet of Things (IoT) is the collection of physical objects, called "things" which

are embedded with software, network, & sensors allows the objects for collection

and exchange of data. The aim of IoT is to expand the internet connection from a

standard device like mobile, computer to relatively small devices.

IoT makes every device "smart," by improving the power of data collection, AI,

and networking. IOT allows things for communication & data exchange when

executes meaningful information.

 What is IoT?

History of IOT

1970- The idea about connected devices was proposed

1990- John Romkey created a toaster that can be switched on/off through Internet

1995- Cellular module for M2M was introduced by Siemens

1999- Kevin Ashton introduced “Internet of Things” which became widely

accepted

2004 – Internet of things was published in famous publications such as the

Guardian, Boston Globe, and Scientific American

2005-UN's International Telecommunications Union (ITU) published its first

report on Internet of Things.

2008- The Internet of Things was born

2011- One of the research company Gartner consider "The Internet of Things" in

their research

How IOT works?

 How IoT Works

The whole process begins with the devices themselves like smart phones, smart

refrigerator, smart watch, electronic appliances like smart TV, Washing Machine

which help us to communicate with IOT platform.

IoT system consists of the following components

1) Sensors/Devices:

Sensors are the devices which collect live data from the environment. These

data have various levels of complexities. It may be a temperature monitoring

sensor, or may be in the form of video feed. A device has different types of

sensors that perform multiple tasks besides sensing. For example, mobile

phone consists of multiple sensors like GPS, camera but smart phone is not

able to sense these things.

2) Connectivity:

The collected data is sent to a cloud infrastructure. The sensors should be

connected to the cloud by different channels of communications. This

communication channel includes mobile networks, Bluetooth, WI-FI, WAN,

etc.

3) Data Processing:

After data collected, it gets to the cloud; the software that performs

processing on these collected data.

4) User Interface:

The information can be send to end-user by triggering alarms on phones or

by the notification send through email or text message. The user need an

interface which checks their IOT system.

IoT Applications

 IoT Applications

IoT applications are given below:

Smart Thermostats

It save the resources on heating bills by knowing the usage patterns.

Connected Cars

IOT automatically helps the automobile companies for handle billing, parking

system, insurance, and other related stuff.

Activity Trackers

It can be able to capture the heart rate pattern, calorie expenditure, activity levels,

and skin temperature on wrist.

Smart Outlets

Remotely turn any device on or off. It allows a device’s for tracking the energy

level and send notifications directly to the smart phone.

Parking Sensors

IOT technology helps the users to identify real-time availability of slot for parking

spaces on smart phone.

Connect Health

Connected health care means facilitates real-time health monitoring and patient

care. It can help for improved medical decision-making based on patient data.

Smart City

Smart city includes traffic management system, rain water drainage & waste

management, etc.

Smart home

Smart home refers to the connectivity inside the homes. It consists of smoke

detectors, home appliances, light bulbs, windows and door locks, etc.

Smart supply chain

Real time tracking of goods can be identified by IOT when they are on the road, or

getting suppliers to exchange the inventory information.

Challenges of IoT

Insufficient testing and updating

Concern regarding data security and privacy

Software complexity

Data volumes and interpretation

Integration with AI and automation

Devices require a constant power supply which is difficult

Interaction and short-range communication

Advantages of IoT

 Key benefits of IoT technology are as follows:

Technical Optimization:

IoT helps for improvement of technologies and make them better. Example,

with IoT, a car manufacture collects the data from different car sensor and analyzes

these data to improve the design and more efficient.

Improved Data Collection:

 IoT takes immediate action on data compare to traditional data collection

which has its limitation

Reduced Waste:

IoT gives real-time information about data for decision making &

management of resources. For example, if a car manufacturer finds some issues in

the car engines, then he find the manufacturing plan of the engines and solves

with the manufacturing belt.

Improved Customer Engagement:

IoT can improve customer experience by detecting problems by improving

the process.

Disadvantages IOT

Security:

IoT technology creates an During the ecosystem of the connected devices,

IOT offer authentication control irrespective of sufficient security measures.

Privacy:

IOT technology exposes a substantial amount of personal data, without the

user's active participation. Due to this, a lots of privacy issues are created

Flexibility:

Flexibility of the IoT system is mainly due to integrating with another system as

there are many diverse systems involved in the process.

Complexity:

IOT system design is very complicated with its deployment and

maintenance.

Compliance:

IOT system has its own rules and regulations, because of its complexity, the

task of compliance is almost challenging.

IOT Best Practices

Design products for reliability and security

Use strong authentication and security protocols

Disable non-essential services

Ensure Internet-managed, and IoT management hubs & services are secured

Energy efficient algorithms should be designed for the system to be active longer.

Definition of IOT

Network infrastructure with self-configuring capabilities based on standard and

interoperable communication protocols where physical and virtual "things have

identities, physical attributes, and virtual personalities and use intelligent

interfaces, and are integrated into the information network, and communicate data

with each other and their environments.

Characteristics of IOT

• Dynamic & Self-Adapting:

IoT devices can dynamically adapt with the changing contexts and take immediate

actions by their operating conditions, user's context, or sensed environment. For

example, The surveillance cameras can change the modes (to normal or infra-red

night modes) by detecting whether it is day or night. Cameras itself change from

lower to higher resolution modes if any motion is detected. Here the surveillance

system is self adapting based on the context and dynamic conditions.

• Self-Configuring:

IoT device can allow a set of large number of devices to work together to provide

certain function (weather monitoring). These devices can configure themselves in

association with the IoT infrastructure, networking, and fetch software upgrades

with user intervention.

• Interoperable Communication Protocols:

IoT devices can support a number of interoperable communication protocols which

can communicate with other devices and with the infrastructure.

• Unique Identity:

IoT device has a unique identity and a unique identifier (IP address or a URI). IoT

system have intelligent interfaces which allow the device to communicate with

users and the environmental. IoT device allow users to monitor their status, and

control remotely, in contest with the control, configuration and management

infrastructure.

• Integrated into Information Network:

IoT devices are integrated into the information network which allows them to

communicate and exchange data with other devices and the systems. IoT devices

can be dynamically discovered with the network, For example, a weather

monitoring system, it can monitor other devices so that they can communicate and

exchange data with each other. Integrated into the information network can help

the loT systems "smarter" due to collective information about individual devices in

collaboration with the infrastructure. Hence, the aggregated data from large

number of connected weather monitoring loT nodes can be analyzed to predict the

weather condition

LECTURE-2

PHYSICAL DESIGN OF IOT; IOT PROTOCOLS, OPEN SYSTEM INTERCONNECTION

MODEL (OSI), DATA NETWORKING.

Physical Design of loT

Things in loT

An IoT device has a no of interfaces for connections with the other devices, both

wired and wireless. These are

(1) I/O interfaces for sensors,

(2) (ii) Internet connectivity,

(3) (iii) memory and storage interfaces and

(4) (iv) audio /video interfaces.

IoT device collects different types of data from sensors, such as temperature,

humidity, and light intensity.

These sensed data are communicated to other devices or to the cloud servers.

 Block diagram of an IoT Device

loT Protocols

Link Layer

• The transmission of data over the network's physical layer determine by link

layer protocol(e.g., copper wire, coaxial cable, or a radio wave).

• Link layer is the local network connection to which host is attached.

• Hosts can exchange the data packets using link layer protocols.

• Link layer determines how the packets are coded and signaled by the

hardware device to which the host is attached (such as a coaxial cable).

802.3 - Ethernet:

• IEEE 802.3 is a collection of wired Ethernet standards for the link layer.

• 802.3 is the standard for 10BASE5 Ethernet that uses coaxial cable as a

shared medium, 8

• 02.3.i is the standard for 10BASE-T Ethernet over copper twisted-pair

connections,

• 802.3.j is the standard for 10BASE-F Ethernet over fiber optic connections,

• 802.3ae is the standard for 10 Gbit/s Ethernet over fiber. These standards

provide data rates from 10 Mb/s to 40 Gb/s and higher.

• The shared medium in Ethernet can be a coaxial cable, twisted-pair wire or

an optical fiber.

802.11 - Wi-Fi:

• IEEE 802.11 is a collection of wireless local area network (WLAN)

communication standards,. For example,

• 802.11a operates in the 5 GHz band, 802.11b and 802.11g operate in the 2.4

GHz band,

• 802.11n operates in the 2.4/5 GHz bands, 802.11ac operates in the 5 GHz

band

• 802.11ad operates in the 60 GHz band. These standards provide data rates

from 1 Mb/s to up to 6.75 Gb/s.

802.16 - WiMax:

• IEEE 802.16 is a collection of wireless broadband standards, (also called

WiMax).

• WiMax standards provide data rates from 1.5 Mb/s to 1 Gb/s

802.15.4 - LR-WPAN:

• IEEE 802.15.4 is the collection of standards for low-rate wireless personal

area networks (LR-WPANs).

• These standards create the specifications for high level communication

protocols such as ZigBee.

• This provides data rates starting from 40 Kb/s 250 Kb/s. These standards

provide low-cost and low-speed communication for power constrained

devices.

2G/3G/4G - Mobile Communication:

• The generations of mobile communication standards including second

generation (2G including GSM and CDMA), third generation (3G -

including UMTS and CDMA2000) and fourth generation (4G - including

LTE).

• IoT devices having these standards can communicate over cellular networks.

• Data rates for these standards range from 9.6 Kb/s (for 2G) to up to 100

Mb/s (for 4G) and are available from the 3GPP websites.

 IoT Protocols

Network/Internet Layer

The network layers are responsible for sending of IP datagram from the source

network to the destination network. This layer performs the host addressing and

packet routing. The datagram contain the source and destination addresses which

are used to route them from the source to destination across multiple networks.

Host identification is done using hierarchical IP addressing schemes such as IPv4

or IPv6.

IPv4:

• Internet Protocol version 4 (IPv4) is used to identify the devices on a

network using a hierarchical addressing scheme & it is the most deployed

internet protocol

• IPv4 uses a 32-bit address scheme which allows total of 232 or 4,294,967,296

addresses. These addresses exhausted in the year 2011 as maximum no of

devices are connected to the internet. So IPv4 succeeded by IPv6.

• The IP protocol generates connections on packet networks, but without any

guarantee for packets delivery. TCP can give guarantee about delivery and

data integrity.

IPv6:

• Internet Protocol version 6 (IPv6) is the latest version of Internet protocol

and successor to IPv4.

• IPv6 uses 128-bit address scheme which allows total of 2128 or 3.4 x 1038

addresses.

6LOWPAN:

6LOWPAN (IPv6 over Low power Wireless Personal Area Networks) creates IP

protocol for low-power devices which have limited processing capability.

6LOWPAN operates in the 2.4 GHz frequency range and provides data transfer

rates of 250 Kb/s. 6LOWPAN works with the 802.15.4 link layer protocol and

defines compression mechanisms for IPv6 datagrams over IEEE 802.15.4-based

networks.

Transport Layer

The transport layer protocols provide end-to-end message transfer capability

independent of the underlying network. The message transfer capability can be set

up on connections, either using handshakes (as in TCP) or without

handshakes/acknowledgements (as in UDP). The transport layer provides functions

such as error control, segmentation, flow control and congestion control.

TCP:

Transmission Control Protocol (TCP) is the most widely used transport layer

protocol, that is used by web browsers (along with HTTP, HTTPS application

layer protocols), email programs (SMTP application layer protocol) and file

transfer (FTP). TCP is a connection oriented and stateful protocol. While IP

protocol deals with sending packets, TCP ensures reliable transmission of packets

in-order. TCP also provides error detection capability so that duplicate packets can

be discarded and lost packets are retransmitted. The flow control capability of TCP

ensures that rate at which the sender sends the data is not too high for the receiver

to process. The congestion control capability of TCP helps in avoiding network

congestion and congestion collapse which can lead to degradation of network

performance.

UDP:

Unlike TCP, which requires carrying out an initial setup procedure, UDP is a

connectionless protocol. UDP is useful for time-sensitive applications that have

very small data units to exchange and do not want the overhead of connection

setup. UDP is a transaction oriented and stateless protocol. UDP does not provide

guaranteed delivery, ordering of messages and duplicate elimination. Higher levels

of protocols can ensure reliable delivery or ensuring connections created are

reliable.

Application Layer

Application layer protocols define how the applications interface with the lower

layer protocols to send the data over the network. The application data, typically in

files, is encoded by the application layer protocol and encapsulated in the transport

layer protocol which provides connection or transaction oriented communication

over the network. Port numbers are used for application addressing (for example

port 80 for HTTP, port 22 for SSH, etc.). Application layer protocols enable

process-to-process connections using ports.

HTTP:

Hypertext Transfer Protocol (HTTP) is the application layer protocol that forms the

foundation of the World Wide Web (WWW). HTTP includes commands such as

GET, PUT, POST, DELETE, HEAD, TRACE, OPTIONS, etc. The protocol

follows a request-response model where a client sends requests to a server using

the HTTP commands. HTTP is a stateless protocol and each HTTP request is

independent of the other requests. An HTTP client can be a browser or an

application running on the client (e.g., an application running on an IoT device, a

mobile application or other software). HTTP protocol uses Universal Resource

Identifiers (URIS) to identify HTTP resources.

COAP:

Constrained Application Protocol (COAP) is an application layer protocol for

machine-to-machine (M2M) applications, meant for constrained environments

with constrained devices and constrained networks. Like HTTP, COAP is a web

transfer protocol and uses a request-response model, however it runs on top of

UDP instead of TCP. COAP uses a client-server architecture where clients

communicate with servers using connectionless datagrams. CoAP is designed to

easily interface with HTTP Like HTTP, COAP supports methods such as GET,

PUT, POST, and DELETE.

WebSocket:

WebSocket protocol allows full-duplex communication over a single socket

connection for sending messages between client and server. WebSocket is based

on TCP and allows streams of messages to be sent back and forth between the

client and server while keeping the TCP connection open. The client can be a

browser a mobile application or an IoT device.

MQTT:

Message Queue Telemetry Transport (MQTT) is a light-weight messa protocol

based on the publish-subscribe model. MQTT uses a client-server architer where

the client (such as an IoT device) connects to the server (also called MOTT

Broker) and publishes messages to topics on the server. The broker forwards the

messages to the clients subscribed to topics. MQTT is well suited for constrained

environments where the devices have limited processing and memory resources

and the network bandwidth is low.

XMPP:

Extensible Messaging and Presence Protocol (XMPP) is a protocol for real-time

communication and streaming XML data between network entities. XMPP powers

wide range of applications including messaging, presence, data syndication,

gaming, multi-party chat and voice/video calls. XMPP allows sending small

chunks of XML data from one network entity to another in near real-time. XMPP

is a decentralized protocol and uses a client-server architecture. XMPP supports

both client-to-server and server-to-server communication paths. In the context of

IoT, XMPP allows real-time communication between IoT devices.

DDS:

Data Distribution Service (DDS) is a data-centric middleware standard for device-

to-device or machine-to-machine communication. DDS uses a publish-subscribe

model where publishers (e.g. devices that generate data) create topics to which

subscribers (e.g., devices that want to consume data) can subscribe. Publisher is an

object responsible for data distribution and the subscriber is responsible for

receiving published data. DDS provides quality-of-service (QoS) control and

configurable reliability.

AMQP:

Advanced Message Queuing Protocol (AMQP) is an open application layer

protocol for business messaging. AMQP supports both point-to-point and

publisher/subscriber models, routing and queuing. AMQP brokers receive

messages from publishers (e.g., devices or applications that generate data) and

route them over connections to consumers (applications that process data).

Publishers publish messages to exchanges which then distribute message copies to

queues. Messages ar either delivered by the broker to the consumers which have

subscribed to the queue or the consumers can pull the messages from the queues.

LECTURE-3

 LOGICAL DESIGN OF IOT, FUNCTIONAL BLOCK AND COMMUNICATION

 MODELS

Logical Design of loT

Logical design of an IoT system refers to an abstract representation of the entities

and processes without going into the low-level specifics of the implementation. In

this section the functional blocks of an IoT system and the communication APIs

are used.

lot Functional Blocks

An IoT system comprises of a number of functional blocks that provide the system

the capabilities for identification, sensing, actuation, communication, and

management as shown in Figure. These functional blocks are described as follows:

Device:

An IoT system comprises of devices that provide sensing, actuation, and

monitoring and control functions.

Communication:

The communication block handles the communication for the IoT system.

Services:

An IoT system uses various types of IoT services such as services for device

monitoring, device control services, data publishing services and services for

device discovery.

Management:

Management functional block provides various functions to govern the IoT system.

Security:

Security functional block secures the IoT system and by providing functions such

as authentication, authorization, message and content integrity, and data security.

Application:

IoT applications provide an interface that the users can use to control and monitor

various aspects of the IoT system. Applications also allow users to view the system

status and view or analyze the processed data.

 Functional Blocks of IOT

loT Communication Models

• Request-Response:

Request-Response is a communication model in which the client sends requests

to the server and the server responds to the requests. When the server receives a

request, it decides how to respond, fetches the data, retrieves resource

representations, prepares the response, and then sends the response to the client.

Request-Response model is a stateless communication model and each request-

response pair is independent of others. Figure shows the client-server interactions

in the request-response model.

 Request-Response communication model

Publish-Subscribe:

Publish-Subscribe is a communication model that involves publishers, brokers and

consumers. Publishers are the source of data. Publishers sem the data to the topics

which are managed by the broker. Publishers are not aware o the consumers.

Consumers subscribe to the topics which are managed by the broke. When the

broker receives data for a topic from the publisher, it sends the data to all the

subscribed consumers. Figure shows the publisher-broker-consumer interactions in

the publish-subscribe model.

 Publish-Subscribe communication model

 Push-Pull communication model

Push-Pull:

Push-Pull is a communication model in which the data producers push the data to

queues and the consumers pull the data from the queues. Producers do not need to

be aware of the consumers. Queues help in decoupling the messaging between the

producers and consumers. Queues also act as a buffer which helps in situations

when there is a mismatch between the rate at which the producers push data and

the rate at which the consumers pull data. Figure shows the publisher-queue-

consumer interactions in the push-pull model.

Exclusive Pair:

Exclusive Pair is a bi-directional, fully duplex communication model that uses a

persistent connection between the client and server. Once the connection is setup it

remains open until the client sends a request to close the connection. Client and

server can send messages to each other after connection setup. Exclusive pair is a

stateful communication model and the server is aware of all the open connections

Figure shows the client-server interactions in the exclusive pair model.

 Exclusive Pair communication model

loT Communication APIs

REST-based Communication APIs

Representational State Transfer (REST) is a set of architectural principles by which

you can design web services and web APIs that focus on a system's resources and

how resource states are addressed and transferred. REST APIs follow the request-

response communication model described in previous section. The REST

architectural constraints apply to the components, connectors, and data elements,

within a distributed hypermedia system. The REST architectural constraints are as

follows:

 Figure 1: Communication with REST APIs

Client-Server:

The principle behind the client-server constraint is the separation of concerns. For

example, clients should not be concerned with the storage of data which is a

concern of the server. Similarly, the server should not be concerned about the user

interface, which is a concern of the client. Separation allows client and server to be

independently developed and updated.

Stateless:

Each request from client to server must contain all the information necessary to

understand the request, and cannot take advantage of any stored context on the

server. The session state is kept entirely on the client.

Cache-able:

Cache constraint requires that the data within a response to a request be implicitly

or explicitly labeled as cache-able or non-cache-able. If a response is cache-able,

then a client cache is given the right to reuse that response data for later, equivalent

requests. Caching can partially or completely eliminate some interactions and

improve efficiency and scalability.

 Layered System:

Layered system constraint, constrains the behavior of components such that each

component cannot see beyond the immediate layer with which they are interacting.

For example, a client cannot tell whether it is connected directly to the end server,

or to an intermediary along the way. System scalability can be improved by

allowing intermediaries to respond to requests instead of the end server, without

the client having to do anything different.

Uniform Interface:

Uniform Interface constraint requires that the method of communication between a

client and a server must be uniform. Resources are identified in the requests (by

URIs in web based systems) and are themselves separate from the representations

of the resources that are returned to the client. When a client holds a representation

of a resource it has all the information required to update or delete the resource

(provided the client has required permissions). Each message includes enough

information to describe how to process the message.

Code on demand:

Servers can provide executable code or scripts for clients to execute in their

context. This constraint is the only one that is optional.

A RESTful web service is a "web API" implemented using HTTP and REST

principles. Figure 1 shows the communication between client and server using

REST APIs. Figure 2 shows the interactions in the request-response model used by

REST. RESTful web service is a collection of resources which are represented by

URIS. RESTful web API has a base URI (e.g. http://example.com/api/tasks/). The

clients send requests to these URIs using the methods defined by the HTTP

protocol (e.g., GET, PUT, POST, or DELETE.

WebSocket-based Communication APIs

WebSocket APIs allow bi-directional, full duplex communication between clients

and servers. WebSocket APIs follow the exclusive pair communication model n in

Figure. Unlike request-response APIs such as REST, the WebSocket APIs allow

full duplex communication and do not require a new connection to be setup for

each message to be sent. WebSocket communication begins with a connection

setup request sent by the client to the server. This request (called a WebSocket

handshake) is sent over HTTP and the server interprets it as an upgrade request. If

the server supports WebSocket protocol, the server responds to the WebSocket

handshake response. After the connection is setup, the client and server can send

data/messages to each other in full-duplex mode. WebSocket APIs reduce the

network traffic and latency as there is no overhead for connection setup and

termination requests for each message. WebSocket is suitable for lol applications

that have low latency or high throughput requirements.

 Exclusive pair model used by WebSocket APIs

LECTURE-4

IOT ENABLING TECHNOLOGIES

loT Enabling Technologies

IoT is enabled by several technologies including wireless sensor networks, cloud

computing, big data analytics, embedded systems, security protocols and

architectures, communication protocols, web services, mobile Internet, and

semantic search engines.

Wireless Sensor Networks

A Wireless Sensor Network (WSN) comprises of distributed devices with sensors

which are used to monitor the environmental and physical conditions. A WSN

consist of a number of end-nodes and routers and a coordinator. End nodes have

several sensors attached to them. End nodes can also act as routers. Routers are

responsible for routing the data packets from end-nodes to the coordinator. The

coordinator collects the data from all the nodes. Coordinator also acts as a gateway

that connects the WSN to the Internet. Some examples of WSNs used in IoT

systems are described as follows:

• Weather monitoring systems use WSNs in which the nodes collect

temperature, humidity and other data, which is aggregated and analyzed.

• Indoor air quality monitoring systems use WSNs to collect data on the

indoor air quality and concentration of various gases.

• Soil moisture monitoring systems use WSNs to monitor soil moisture at

various locations.

• Surveillance systems use WSNs for collecting surveillance data (such as

motion detection data)

• Smart grids use WSNs for monitoring the grid at various points.

• Structural health monitoring systems use WSNs to monitor the health of

structures (buildings, bridges) by collecting vibration data from sensor nodes

deployed at various points in the structure.

WSNs are enabled by wireless communication protocols such as IEEE

802.15.4. ZigBee is one of the most popular wireless technologies used by

WSNs. ZigBee specifications are based on IEEE 802.15.4. ZigBee operates

at 2.4 GHz frequency and offers data rates upto 250 KB/s and range from 10

to 100 meters depending on the power output and environmental conditions.

The power of WSNs lies in their ability to deploy large number of low-cost

and low-power sensing nodes for continuous monitoring of environmental

and physical conditions. WSNs are self-organizing networks. Since WSNs

have large number of nodes, manual configuration for each node is not

possible. The self-organizing capability of WSN makes the network robust.

In the event of failure of some nodes or addition of new nodes to the

network, the network can reconfigure itself.

Cloud Computing

Cloud computing is a transformative computing paradigm that involves delivering

applications and services over the Internet. Cloud computing involves provisioning

of computing, networking and storage resources on demand and providing these

resources as metered services to the users, in a "pay as you go" model. Cloud

computing resources can be provisioned on-demand by the users, without requiring

interactions with the cloud service provider. The process of provisioning resources

is automated. Cloud computing resources can be accessed over the network using

standard access mechanisms that provide platform-independent access through the

use of heterogeneous client platforms such as workstations, laptops, tablets and

smart-phones. The computing and storage resources provided by cloud service

providers are pooled to serve multiple users using multi-tenancy, Multi-tenant

aspects of the cloud allow multiple users to be served by the same physical

hardware. Users are assigned virtual resources that run on top of the physical

resources.

Cloud computing services are offered to users in different forms

• Infrastructure-as-a-Service (IaaS):

IaaS provides the users the ability to provision computing and storage

resources. These resources are provided to the users as virtual machine

instances and virtual storage. Users can start, stop, configure and manage the

virtual machine instances and virtual storage. Users can deploy operating

systems and applications of their choice on the virtual resources provisioned

in the cloud. The cloud service provider manages the underlying

infrastructure. Virtual resources provisioned by the users are billed based on

a pay-per-use paradigm.

• Platform-as-a-Service (PaaS):

PaaS provides the users the ability to develop and deploy application in the

cloud using the development tools, application programming interfaces

(APIs), software libraries and services provided by the cloud service

provider. The cloud service provider manages the underlying cloud

infrastructure including servers, network, operating systems and storage. The

users, themselves, are responsible for developing, deploying, configuring

and managing applications on the cloud infrastructure.

• Software-as-a-Service (SaaS):

SaaS provides the users a complete software application or the user interface

to the application itself. The cloud service provider manages the underlying

cloud infrastructure including servers, network, operating systems, storage

and application software, and the user is unaware of the underlying

architecture of the cloud. Applications are provided to the user through a

thin client interface (e.g., a browser). SaaS applications are platform

independent and can be accessed from various client devices such as

workstations, laptop, tablets and smart-phones, running different operating

systems. Since the cloud service provider manages both the application and

data, the users are able to access the applications from anywhere.

Big Data Analytics

Big data is defined as collections of data sets whose volume, velocity (in terms of

its temporal variation), or variety, is so large that it is difficult to store, manage,

process and analyze the data using traditional databases and data processing tools.

Big data analytics involves several steps starting from data cleansing, data

munging (or wrangling), data processing and visualization. Some examples of big

data generated by IoT systems are described as follows:

• Sensor data generated by IoT systems such as weather monitoring stations.

• Machine sensor data collected from sensors embedded in industrial and energy

systems for monitoring their health and detecting failures.

• Health and fitness data generated by IoT devices such as wearable fitness bands.

• Data generated by IoT systems for location and tracking of vehicles.

• Data generated by retail inventory monitoring systems.

The underlying characteristics of big data include:

Volume:

Though there is no fixed threshold for the volume of data to be considered as big

data, however, typically, the term big data is used for massive scale data that is

difficult to store, manage and process using traditional databases and data

processing architectures. The volumes of data generated by modern IT, industrial,

and health-care systems, for example, is growing exponentially driven by the

lowering costs of data storage and processing architectures and the need to extract

valuable insights from the data to improve business processes, efficiency and

service to consumers.

Velocity:

Velocity is another important characteristic of big data and the primary reason for

exponential growth of data. Velocity of data refers to how fast the data is generated

and how frequently it varies. Modern IT, industrial and other systems are

generating data at increasingly higher speeds.

Variety:

Variety refers to the forms of the data. Big data comes in different forms such as

structured or unstructured data, including text data, image, audio, video and sensor

data.

Communication Protocols

Communication protocols form the backbone of IoT systems and enable network

connectivity and coupling to applications. Communication protocols allow devices

to exchange data over the network. In section 1.2.2 you learned about various link,

network, transport and application layer protocols. These protocols define the data

exchange formats, data encoding, addressing schemes for devices and routing of

packets from source to destination. Other functions of the protocols include

sequence control (that helps in ordering packets determining lost packets), flow

control (that helps in controlling the rate at which the sender is sending the data so

that the receiver or the network is not overwhelmed) and retransmission of lost

packets.

Embedded Systems

An Embedded System is a computer system that has computer hardware and sa

embedded to perform specific tasks. In contrast to general purpose computers or

per computers (PCs) which can perform various types of tasks, embedded systems

are designed to perform a specific set of tasks. Key components of an embedded

system include microprocessor or microcontroller, memory (RAM, ROM, cache),

networking units (Ether WiFi adapters), input/output units (display, keyboard, etc.)

and storage (such as flash memory). Some embedded systems have specialized

processors such as digital signal processors (DSPs), graphics processors and

application specific processors. Embedded systems run embedded operating

systems such as real-time operating systems (RTOS) Embedded systems range

from low-cost miniaturized devices such as digital watches to devices such as

digital cameras, point of sale terminals, vending machines, appliances (such as

washing machines), etc

LECTURE-5

IOT LEVELS AND DEPLOYMENT TEMPLATES

loT Levels & Deployment Templates

This section defines various levels of IoT systems with increasing completely. An

IoT system comprises of the following components:

• Device: An IoT device allows identification, remote sensing, actuating and

remote monitoring capabilities.

• Resource: Resources are software components on the IoT device for

accessing, processing, and storing sensor information, or controlling

actuators connected to the device. Resources also include the software

components that enable network access for the device.

• Controller Service: Controller service is a native service that runs on the

device and interacts with the web services. Controller service sends data

from the device to the web service and receives commands from the

application (via web services) for controlling the device.

• Database: Database can be either local or in the cloud and stores the data

generated by the IoT device.

• Web Service: Web services serve as a link between the IoT device,

application, database and analysis components. Web service can be either

implemented using HTTP and REST principles (REST service) or using

WebSocket protocol (WebSocket service).

A comparison of REST and WebSocket is provided below:

1. Stateless/Stateful:

REST services are stateless in nature. Each request contains all the

information needed to process it. Requests are independent of each other.

WebSocket on the other hand is stateful in nature where the server maintains

the state and is aware of all the open connections.

2. Uni-directional/Bi-directional:

REST services operate over HTTP and are uni-directional. Request is always

sent by a client and the server responds to the requests. On the other hand,

WebSocket is a bi-directional protocol and allows both client and server to

send messages to each other.

3. Request Response/Full Duplex:

REST services follow a request-response communication model where the

client sends requests and the server responds to the requests. WebSocket on

the other hand allow full-duplex communication between the client and

server, i.e., both client and server can send messages to each other

independently.

4. TCP Connections:

For REST services, each HTTP request involves setting up a new TCP

connection. WebSocket on the other hand involves a single TCP connection

over which the client and server communicate in a full-duplex mode.

5. Header Overhead:

REST services operate over HTTP, and each request is independent of

others. Thus each request carries HTTP headers which is an overhead. Due

the overhead of HTTP headers, REST is not suitable for real-time

applications. WebSocket on the other hand does not involve overhead of

headers. After the initial handshake (that happens over HTTP), the client and

server exchange messages with minimal frame information. Thus

WebSocket is suitable for real-time applications.

6. Scalability:

Scalability is easier in the case of REST services as requests are independent

and no state information needs to be maintained by the server. Thus both

horizontal (scaling-out) and vertical scaling (scaling-up) solutions are

possible for REST services. For WebSockets, horizontal scaling can be

cumbersome due to the stateful nature of the communication. Since the

server maintains the state of a connection, vertical scaling is easier for

WebSockets than horizontal scaling.

• Analysis Component: The Analysis Component is responsible for

analyzing the IoT data and generate results in a form which are easy for the

user to understand. Analysis of IoT data can be performed either locally or

in the cloud. Analyzed results are stored in the local or cloud databases.

• Application: IoT applications provide an interface that the users can use to

control and monitor various aspects of the IoT system. Applications also

allow users to view the system status and view the processed data.

loT Level-1

A level-1 IoT system has a single node/device that performs sensing and/or

actuations data, performs analysis and hosts the application as shown in Figure

Level systems are suitable for modeling low-cost and low-complexity solutions

where the data involved is not big and the analysis requirements are not

computationally intensive.

Let us now consider an example of a level-1 IoT system for home automation. The

system consists of a single node that allows controlling the lights and appliances in

a home remotely. The device used in this system interfaces with the lights and

appliances usine electronic relay switches. The status information of each light or

appliance is maintained in a local database. REST services deployed locally allow

retrieving and updating the state of each light or appliance in the status database.

 IoT Level-1

The controller service continuously monitors the state of each light or appliance

(by retrieving state from the database) and triggers the relay switches accordingly.

The application which is deployed locally has a user interface for controlling the

lights or appliances. Since the device is connected to the Internet, the application

can be accessed remotely as well.

loT Level-2

A level-2 IoT system has a single node that performs sensing and/or actuation and

local analysis as shown in Figure. Data is stored in the cloud and application is

usually cloud-based. Level-2 IoT systems are suitable for solutions where the data

involved is big, however, the primary analysis requirement is not computationally

intensive and can be done locally itself.

 IoT Level-2

 Let us consider an example of a level-2 IoT system for smart irrigation. The

system consists of a single node that monitors the soil moisture level and controls

the irrigation system. The device used in this system collects soil moisture data

from sensors. The controller service continuously monitors the moisture levels. If

the moisture level drops below a threshold, the irrigation system is turned on. For

controlling the irrigation system actuators such as solenoid valves can be used. The

controller also sends the moisture data the computing cloud. A cloud-based REST

web service is used for storing and retrieving moisture data which is stored in the

cloud database. A cloud-based application is used 10 visualizing the moisture

levels over a period of time, which can help in making decision about irrigation

schedules.

LECTURE-6

IOT LEVELS AND DEPLOYMENT TEMPLATES CONT.

IoT Level-3

A level-3 IoT system has a single node. Data is stored and analyzed in the cloud

application is cloud-based as shown in Figure.Level-3 IoT systems are suitable for

solutions where the data involved is big and the analysis requirements are

computationally intensive.

 IoT Level-3

Let us consider an example of a level-2 IoT system for tracking package handling.

The system consists of a single node (for a package) that monitors the vibration

levels for a package being shipped. The device in this system uses accelerometer

and gyroscope sensors for monitoring vibration levels. The controller service sends

the sensor data to the cloud in real-time using a WebSocket service. The data is

stored in the cloud and also visualized using a cloud-based application. The

analysis components in the cloud can trigger alerts if the vibration levels become

greater than a threshold. The benefit of using WebSocket service instead of REST

service in this example is that the sensor data can be sent in real time to the

cloud. Moreover, cloud based applications can subscribe to the sensor data feeds

for viewing the real-time data.

IoT Level-4

A level 4 IoT system has multiple nodes that perform local analysis. Data is stored

in cloud and application is cloud-based as shown in Figure. Level 4 contains local

and cloud-based observer nodes which can subscribe to and receive information

collected in the cloud from IoT devices. Observer nodes can process information

and use it for various applications, however, observer nodes do not perform any

control functions. Level-4 IoT systems are suitable for solutions where multiple

nodes are required, the data involved is big and the analysis requirements are

computationally intensive.

Let us consider an example of a level-4 IoT system for noise monitoring. The

system consists of multiple nodes placed in different locations for monitoring noise

levels in an area. The nodes in this example are equipped with sound sensors.

Nodes are independent of each other. Each node runs its own controller service

that sends the data to the cloud. The data is stored in a cloud database. The analysis

of data collected from a number of nodes is done in the cloud. A cloud-based

application is used for visualizing the aggregated data.

 IoT Level-4

loT Level-5

A level-5 IoT system has multiple end nodes and one coordinator node as shown in

Figure. The end nodes that perform sensing and/or actuation. Coordinator node

collects data from the end nodes and sends to the cloud. Data is stored and

analyzed in the cloud and application is cloud-based. Level-5 IoT systems are

suitable for solutions based on wireless sensor networks, in which the data

involved is big and the analysis requirements are computationally intensive.

Let us consider an example of a level-5 IoT system for forest fire detection. The

system consists of multiple nodes placed in different locations for monitoring

temperature, humidity and carbon dioxide (CO2) levels in a forest. The end nodes

in this example are equipped with various sensors (such as temperature, humidity

and CO2). The coordinator node collects the data from the end nodes and acts as a

gateway that provides Internet connectivity to the IoT system. The controller

service on the coordinator device sends the collected data to the cloud. The data is

stored in a cloud database. The analysis of data is done in the computing cloud to

aggregate the data and make predictions. A cloud-based application is used for

visualizing the data.

 IoT Level-5

IoT Level-6

A level-6 IoT system has multiple independent end nodes that perform sensing

and/or actuation and send data to the cloud. Data is stored in the cloud and

application is cloud-based as shown in Figure. The analytics component analyzes

the data and stores the results in the cloud database. The results are visualized with

the cloud-based application. The centralized controller is aware of the status of all

the end nodes and sends control commands to the nodes.

Let us consider an example of a level-6 IoT system for weather monitoring system

consists of multiple nodes placed in different locations for monitoring temperature

humidity and pressure in an area. The end nodes are equipped with various sensors

(such temperature, pressure and humidity). The end nodes send the data to the

cloud in real-time using a WebSocket service. The data is stored in a cloud

database. The analysis of data is done in the cloud to aggregate the data and make

predictions. A cloud-based applications used for visualizing the data.

 IoT Level-6

LECTURE-7

DOMAIN SPECIFIC IOTS; HOME AUTOMATION; CITIES

Domain specific IoT

Domain Specific IoTs

 Outline IoT Applications for

 • Home

 • Cities

 • Environment

 • Energy Systems

 • Retail

 • Logistics

 • Industry

 • Agriculture

 • Health & Lifestyle

 Home Automation IoT applications for smart homes:

 Smart Lighting

 Smart Appliances

 Intrusion Detection

 Smoke / Gas Detectors

 Smart Lighting

• Smart lighting achieve energy savings by sensing the human movements

and their environments and controlling the lights accordingly.

• Key enabling technologies for smart lighting include

Solid state lighting (such as LED lights)

https://image.slidesharecdn.com/domainspecificiots-160901033357/95/domain-specific-iot-2-638.jpg?cb=1472700912
https://image.slidesharecdn.com/domainspecificiots-160901033357/95/domain-specific-iot-3-638.jpg?cb=1472700912

IP-enabled lights

• Wireless-enabled and Internet connected lights can be controlled

remotely from IoT applications such as a mobile or web application.

• LED lighting system that is embedded with ambient intelligence

gathered from a distributed smart WSN to optimize and control the

lighting System to be more efficient and user-oriented.

• A solid state lighting model is implemented on a wireless sensor network

that provide services for sensing illumination changes and dynamically

adjusting luminary brightness according to user preferences.

Smart Appliances

 • Smart appliances make the management easier and provide status information

 of appliances to the users remotely. E.g. smart washer/dryer that can be contro-

 lled remotely and notify when the washing/drying cycle is complete.

 • Open Remote is an open source automation platform for smart home and Build

 ing that can control various appliances using mobile and web applications.

 • It comprises of three components: -

 a Controller -manages scheduling and runtime integration between devices.

 a Designer - allows to create both configuration for the controller and user

 interface designs.

 Control Panel - allows to interact with devices and control them.

• Smart refrigerators can keep track of the items stored (using RFID tags) and

send updates to the user when an item is low on stock. Smart TV allows

user to search and stream videos and movies from the internet on a local

 storage drive, search TV channel schedules and fetch news, weather updates

and other content from the internet.

Intrusion Detection

 • Home intrusion detection systems use security cameras and sensors to detect

 intrusions and raise alerts.

 • The form of the alerts can be in form:

- SMS

- Email

- Image grab or a short video clip as an email attachment

Smoke / Gas Detectors

 • Smoke detectors are installed in homes and buildings to detect smoke that is

 Typically an early sign of fire.

 • It uses optical detection, ionization or air sampling techniques to detect smoke

 • The form of the alert can be in form :

 • Signals that send to a fire alarm system

 • Gas detector can detect the presence of harmful gases such as carbon

 monoxide (CO), liquid petroleum gas (LPG), etc.

Cities IoT applications for smart cities:

• Smart Parking

• Smart Lighting for Road

• Smart Road

• Structural Health Monitoring

• Surveillance

• Emergency Response

Smart Parking

• Finding the parking space in the crowded city can be time consuming and

 frustrating

• Smart parking makes the search for parking space easier and convenient

 for driver.

• It can detect the number of empty parking slots and send the information

 over the Internet to the smart parking applications which can be accessed

 by the drivers using their smartphones, tablets, and in car navigation

 systems.

• Sensors are used for each parking slot to detect whether the slot is empty or

 not, and this information is aggregated by local controller and then sent

 over the Internet to database.

Smart Lighting for Roads

 • It can help in saving energy

 • Smart lighting for roads allows lighting to be dynamically controlled

 and also adaptive to ambient conditions.

 • Smart light connected to the Internet can be controlled remotely to

 configure lighting schedules and lighting intensity.

 • Custom lighting configurations can be set for different situations such as

 a foggy day, a festival, etc.

Smart Roads

 • Smart Roads provides information on driving conditions, travel time

 estimates and alerts in case of poor driving conditions, traffic congestions

 and accidents.

 • Such information can help in making the roads safer and help in reducing

 traffic jams.

 • Information sensed from the roads can be communicated via internet to

 cloud-based applications and social media and disseminated to the drivers

 who subscribe to such applications.

Structural Health Monitoring

 • It uses a network of sensors to monitor the vibration levels in the structures

 such as bridges and buildings.

 • The data collected from these sensors is analyzed to assess the health of the

 structures.

 • By analyzing the data it is possible to detect cracks and mechanical break-

 downs, locate the damages to a structure and also calculate the remaining

 life of the structure.

 •Using such systems, advance warnings can be given in the case of imminent

 failure of the structure.

 Surveillance

• Surveillance of infrastructure, public transport and events in cities is

 required to ensure safety and security.

 • City wide surveillance infrastructure comprising of large number of distri-

 buted and Internet connected video surveillance cameras can be created.

 • The video feeds from surveillance cameras can be aggregated in cloud-

 based scalable storage solutions.

 • Cloud-based video analytics applications can be developed to search for

 patterns of specific events from the video feeds.

 Emergency Response

 • IoT systems can be used for monitoring the critical infrastructure cities

 such as buildings, gas, and water pipelines, public transport and power

 substations.

• IoT systems for critical infrastructure monitoring enable aggregation and

 sharing of information collected from lager number of sensors.

• Using cloud-based architectures, multi-modal information such as sensor

 data, audio, video feeds can be analyzed I near real-time to detect adverse

 events.

The alert can be in the form :

 Alerts sent to the public

 Re-rerouting of traffic

Evacuations of the affected areas

LECTURE-8

DOMAIN SPECIFIC IOTS; ENVIRONMENT; ENERGY; RETAIL

Environment IoT applications for smart environments:

 Weather Monitoring

 Air Pollution Monitoring

 Noise Pollution Monitoring

 Forest Fire Detection

 River Flood Detection

 Weather Monitoring

• It collects data from a number of sensor attached such as temperature,

 humidity, pressure, etc and send the data to cloud-based applications and

 store back-ends.

• The data collected in the cloud can then be analyzed and visualized by

 cloud-based applications.

• Weather alert can be sent to the subscribed users from such applications.

• AirPi is a weather and air quality monitoring kit capable of recording and

 uploading information about temperature, humidity, air pressure, light

 levels, UV levels, carbon monoxide, nitrogen dioxide and smoke level

 to the Internet.

 Air Pollution Monitoring

• IoT based air pollution monitoring system can monitor emission of

 harmful gases by factories and automobiles using gaseous and meteoro-

 logical sensors.

• The collected data can be analyzed to make informed decisions on

pollutions control approaches.

 Noise Pollution Monitoring

• Noise pollution monitoring can help in generating noise maps for cities.

• It can help the policy maker in making policies to control noise levels

near residential areas, school and parks.

• It uses a number of noise monitoring stations that are deployed at

different places in a city.

• The data on noise levels from the stations is collected on servers or in the

cloud and then the collected data is aggregate to generate noise maps.

 Forest Fire Detection

• IoT based forest fire detection system use a number of monitoring nodes

deployed at different location in a forest.

• Each monitoring node collects measurements on ambient condition

including temperature, humidity, light levels, etc.

• Early detection of forest fires can help in minimizing the damage.

 River Flood Detection

• IoT based river flood monitoring system uses a number of sensor nodes

that monitor the water level using ultrasonic sensors and flow rate using

velocity sensors.

• Data from these sensors is aggregated in a server or in the cloud,

monitoring applications raise alerts when rapid increase in water level

and flow rate is detected.

 Energy system IoT applications for smart energy systems:

 Smart Grid

 Renewable Energy Systems

 Prognostics

 Smart Grids

• Smart grid technology provides predictive information and

recommendation s to utilize, their suppliers, and their customers on how

best to manage power.

• Smart grid collect the data regarding : - Electricity generation -

Electricity consumption - Storage - Distribution and equipment health

data

• By analyzing the data on power generation, transmission and

consumption of smart grids can improve efficiency throughout the electric

system.

• Storage collection and analysis of smarts grids data in the cloud can help

in dynamic optimization of system operations, maintenance, and planning.

• Cloud-based monitoring of smart grids data can improve energy usage

usage levels via energy feedback to users coupled with real-time pricing

information.

• Condition monitoring data collected from power generation and

transmission systems can help in detecting faults and predicting outages.

 Renewable Energy System

• Due to the variability in the output from renewable energy sources (such

as solar and wind), integrating them into the grid can cause grid stability

and reliability problems.

• IoT based systems integrated with the transformer at the point of

interconnection measure the electrical variables and how much power is

fed into the grid

• To ensure the grid stability, one solution is to simply cut off the

overproductions.

 Prognostics

• IoT based prognostic real-time health management systems can predict

performance of machines of energy systems by analyzing the extent of

deviation of a system from its normal operating profiles.

• In the system such as power grids, real time information is collected using

specialized electrical sensors called Phasor Measurement Units (PMU)

• Analyzing massive amounts of maintenance data collected from sensors in

energy systems and equipment can provide predictions for impending

failures.

• Open PDC is a set of applications for processing of streaming time-series

data collected from Phasor Measurements Units (PMUs) in real-time.

 Retail IoT applications in smart retail systems:

 Inventory Management

 Smart Payments

 Smart Vending Machines

 Inventory Management

• IoT system using Radio Frequency Identification (RFID) tags can help

inventory management and maintaining the right inventory levels.

• RFID tags attached to the products allow them to be tracked in the real-

time so that the inventory levels can be determined accurately and

products which are low on stock can be replenished

• Tracking can be done using RFID readers attached to the retail store

shelves or in the warehouse.

 Smart Payments

• Smart payments solutions such as contact-less payments powered

technologies such as Near field communication (NFC) and Bluetooth.

• NFC is a set of standards for smart-phones and other devices to

communicate with each other by bringing them into proximity or by

touching them

• Customer can store the credit card information in their NFC-enabled

smart-phones and make payments by bringing the smart-phone near the

point of sale terminals.

• NFC maybe used in combination with Bluetooth, where NFC initiates

initial pairing of devices to establish a Bluetooth connection while the

actual data transfer takes place over Bluetooth.

 Smart Vending Machines

Smart vending machines connected to the Internet allow remote

monitoring of inventory levels, elastic pricing of products, promotions,

and contact-less payments using NFC. - Smart-phone applications that

communicate with smart vending machines allow user preferences to be

remembered and learned with time. E.g: when a user moves from one

vending machine to the other and pair the smart-phone, the user preference

and favorite product will be saved and then that data is used for predictive

maintenance. - Smart vending machines can communicated each others, so

if a product out of stock in a machine, the user can be routed to nearest

machine - For perishable items, the smart vending machines can reduce

the price as the expiry date nears.

LECTURE-9

DOMAIN SPECIFIC IOTS; LOGISTICS; AGRICULTURE; INDUSTRY

 Logistics IoT applications for smart logistic systems:

 Fleet Tracking

 Shipment Monitoring

 Remote Vehicle Diagnostics

 Fleet Tracking

• Vehicle fleet tracking systems use GPS technology to track the locations

of the vehicles in the real- time.

• Cloud-based fleet tracking systems can be scaled up on demand to

handle large number of vehicles.

• The vehicle locations and routers data can be aggregated and analyzed

for detecting bottlenecks I the supply chain such as traffic congestions

on routes, assignments and generation of alternative routes, and supply

chain optimization.

 Shipment Monitoring

 Shipment monitoring solutions for transportation systems allow

 monitoring the conditions inside containers. –

 E.g : Containers carrying fresh food produce can be monitored to prevent

 spoilage of food. IoT based shipment monitoring systems use sensors such as

 temperature, pressure, humidity, for instance, to monitor the conditions inside

 the containers and send the data to the cloud, where it can be analyzed to

 detect food spoilage.

 Remote Vehicle Diagnostics

 It can detect faults in the vehicles or warn of impending faults.

• These diagnostic systems use on-board IoT devices for collecting data on

vehicle operation such as speed, engine RPM, coolent temperature, fault

code number and status of various vehicle sub- system.

• Modern commercial vehicles support on-board diagnostic (OBD) standard

such as OBD-II - OBD systems provide real-time data on the status of

vehicle sub-systems and diagnostic trouble codes which allow rapidly

identifying the faults in the vehicle.

• IoT based vehicle diagnostic systems can send the vehicle data to

centralized servers or the cloud where it can be analyzed to generate alerts

and suggest remedial actions.

Agriculture IoT applications for smart agriculture:

 Smart Irrigation

 Green House Control

 Smart Irrigation

• Smart irrigation system can improve crop yields while saving water.

• Smart irrigation systems use IoT devices with soil moisture sensors to

determined the amount of moisture on the soil and release the flow of

the water through the irrigation pipes only when the moisture levels go

below a predefined threshold.

• It also collect moisture level measurements on the server on in the cloud

where the collected data can be analyzed to plan watering schedules.

• Cultivar’s RainCould is a device for smart irrigation that uses water

valves, soil sensors, and a WiFi enabled programmable computer.

[http://ecultivar.com/rain-cloud-product-project/]

 Green House Control

• It controls temperature, humidity, soil, moisture, light, and carbon

dioxide level that are monitored by sensors and climatological

conditions that are controlled automatically using actuation devices.

• IoT systems play an importance role in green house control and help in

improving productivity.

• The data collected from various sensors is stored on centralized servers

or in the cloud where analysis is performed to optimize the control

strategies and also correlate the productivity with different control

strategies.

 Industry IoT applications in smart industry:

 Machine Diagnosis & Prognosis

 Indoor Air Quality Monitoring

 Machine Diagnosis & Prognosis

• Machine prognosis refers to predicting the performance of machine by

analyzing the data on the current operating conditions and how much

deviations exist from the normal operating condition.

• Machine diagnosis refers to determining the cause of a machine fault.

• Sensors in machine can monitor the operating conditions such as

temperature and vibration levels, sensor data measurements are done on

timescales of few milliseconds to few seconds which leads to

generation of massive amount of data.

• Case-based reasoning (CBR) is a commonly used method that finds

solutions to new problems based on past experience.

• CBR is an effective technique for problem solving in the fields in which

it is hard to establish a quantitative mathematical model, such as

machine diagnosis and prognosis.

Air Quality Monitoring

• Harmful and toxic gases such as carbon monoxide (CO), nitrogen

monoxide (NO), Nitrogen Dioxide, etc can cause serious health

problem of the workers.

• IoT based gas monitoring systems can help in monitoring the indoor air

quality using various gas sensors.

• The indoor air quality can be placed for different locations

• Wireless sensor networks based IoT devices can identify the hazardous

zones, so that corrective measures can be taken to ensure proper

ventilation.

LECTURE-10

DOMAIN SPECIFIC IOTS; HEALTH & LIFE STYLE

 Health & Lifestyle IoT applications in smart health & lifestyle:

 Health & Fitness Monitoring

 Wearable Electronics

 Health & Fitness Monitoring

• Wearable IoT devices allow to continuous monitoring of physiological

parameters such as blood pressure, heart rate, body temperature, etc

than can help in continuous health and fitness monitoring.

• It can analyze the collected health-care data to determine any health

conditions or anomalies.

• The wearable devices may can be in various form such as:

 Belts

 Wrist-bands

 Wearable Electronics

• Wearable electronics such as wearable gadgets (smart watch, smart

glasses, wristbands, etc) provide various functions and features to assist

us in our daily activities and making us lead healthy lifestyles.

• Using the smart watch, the users can search the internet, play

audio/video files, make calls, play games, etc.

• Smart glasses allows users to tae photos and record videos, get map

directions, check flight status or search internet using voice commands

• Smart shoes can monitor the walking or running speeds and jumps with

the help of embedded sensors and be paired with smart-phone to

visualize the data.

• Smart wristbands can tract the daily exercise and calories burnt.

Summary

• Internet of Things (IoT) refers to physical and virtual objects that have

unique identities and are connected to the Internet. This allows the

development of intelligent applicat that make energy, logistics, industrial

control, retail, agriculture and many other domains of human endeavour

"smarter". IoT allows different types of devices, appliances, users and

machines to communicate and exchange data.

• The applications of Internet of Things (IoT) span a wide range of domains

including (but not limited to) homes, cities, environment, energy systems,

retail, logistics, industry, agriculture and health. Things in IoT refers to IoT

devices which have unique identities and allow remote sensing, actuating

and remote monitoring capabilities. Almost all IoT devices generate data in

some form or the other which when processed by data analytics systems

leads to useful information to guide further actions.

• IoT protocols for link, network, transport and application layers. Link layer

protocols determine how the data is physically sent over the network. The

network/internet layers is responsible for sending of IP datagrams from the

source network to the destination network. The transport layer protocols

provides end-to-end message transfer capability independent of the

underlying network. Application layer protocols define how the applications

interface with the lower layer protocols to send the data over the network.

• Functional blocks of an IoT system including device communication,

services, management, security and application blocks.

• IoT communication models such as request-response, publish-subscribe,

push-pull and exclusive pair.

• REST-based and WebSocket-based communication APIs. REST is a set of

architectural principles by which you can design web services and web APIs

that focus on a system's resources and how resource states are addressed and

transferred. A RESTful web service is a web API implemented using HTTP

and REST principles. WebSocket APIs allow bi-directional, full duplex

communication between clients and servers.

• IOT enabling technologies such as wireless sensor networks, cloud

computing, big data analytics, communication protocols and embedded

systems.

• IoT levels. A level-1 IoT system has a single node/device that performs

sensing and/or actuation, stores data, performs analysis and hosts the

application. A level-2 IoT system has a single node that performs sensing

and/or actuation and local analysis. A level-3 IoT system has a single node.

Data is stored and analyzed in the cloud and application is cloud-based. A

level-4 IoT system has multiple nodes that perform local analysis. Data is

stored in the cloud and application is cloud-based. A level-5 IoT system has

multiple end nodes and one coordinator node. A level-6 IoT system has

multiple independent end nodes that perform sensing and/or actuation and

send data to the cloud.

• The Internet of Things (IoT) is a network of physical objects or people

called "things" that are embedded with software, electronics, network, and

sensors which allows these objects to collect and exchange data.

• The actual idea of connected devices was proposed in 1970

• Four Key components of IoT framework are

• 1) Sensors/Devices,

• 2) Connectivity,

• 3) Data Processing,

• 4) User Interface

• Various applications of IoT are Smart Thermostats, Connected Cars,

Activity Trackers, Smart Outlets, Connect Health, etc

• Technical Optimization, Improve Data Collection, Reduced Waste,

Improved Customer Engagement are key benefits of IoT

• Security, Privacy, Complexity, Compliance, are key challenges of IoT

IoT Platforms Design Methodology

Introduction

IoT systems comprise of multiple components and deployment tiers. In design methodology for

IoT system design which is independent of specific product, service or programming language.

IoT systems designed with the proposed methodology have reduced design, testing and

maintenance time, better interoperability and reduced complexity. With the proposed

methodology, IoT system designers can compare various alternatives for the IoT system

components. The methodology based on the IoT-A reference model.

Design Methodology

Figure 1 show the steps involved in the IoT system design methodology. To describe design

methodology we have to go for various steps. To explain these steps, we use the example of a

smart IoT-based home automation system.

 Figure 1: Steps involved in IoT system design methodology

Step 1: Purpose & Requirements Specification

The first step in IoT system design methodology is to define the purpose and requirements of the

system.

In this step, the system purpose, behavior and requirements (such as data collection

requirements, data analysis requirements, system management requirements, data privacy and

security requirements, user interface requirements ...) are captured.

Applying this to our example of a smart home automation system, the purpose and requirements

for the system may be described as follows:

• Purpose: A home automation system that allows controlling of the lights in a home

remotely using a web application.

• Behavior: The home automation system should have auto and manual modes. In auto

mode, the system measures the light level in the room and switches on the light when it

gets dark. In manual mode, the system provides the option of manually and remotely

switching on/off the light.

• System Management Requirement: The system should provide remote

monitoring and control functions.

• Data Analysis Requirement: The system should perform local analysis of the data.

• Application Deployment Requirement: The application should be deployed

locally on the device, but should be accessible remotely.

• Security Requirement: The system should have basic user authentication capability.

Step 2: Process Specification
The second step in the IoT design methodology is to define the process specification.

In the step, the use cases of the loT system are formally described based on and derived from the

purpose and requirement specifications. Figure 2 shows the process diagram for the home

automation system.

The process diagram shows the two modes of the system - auto an manual.

In a process diagram, the circle denotes the start of a process, diamond denotes decision box and

rectangle denotes a state or attribute.

When the auto mode is chosen, the system monitors the light level. If the light level is low, the

system changes the state of the light to "on".if the light level is high, the system changes the state

of the light to "off".

When the manual mode is chosen, the system checks the light state set by the user. If the light

state set by the user is “on”, the system changes the state of light to "on". Whereas if the light

state set by the user is “off”, the system changes the state of light to "off".

 Figure 2: Process specification for home automation IoT system

Step 3: Domain Model Specification

The third step in the IoT design methodology is to define the Domain Model.

The domain model describes the main concepts, entities and objects in the domain of IoT system to be

designed.

Domain model defines the attributes of the objects and relationships between objects.

Domain model provides an abstract representation of the concepts, objects and entities in the IoT domain,

independent of any specific technology or platform.

With the domain model, the IoT system designers can get an understanding of the IoT domain for which

the system is to be designed. Figure 3 shows the domain model for the home automation system example.

The entities, objects and concepts defined in the domain model include: .

• Physical Entity:

Physical Entity is a discrete and identifiable entity in the physical environment (e.g. a room, a

light, an appliance, a car, etc.). The IoT system provides information about the Physical

Entity (using sensors) or performs actuation upon the Physical Entity (e.g., switching on a

light). In the home automation example, there are two Physical Entities involved - one is

the room in the home (of which the lighting conditions are to be monitored) and the other

is the light appliance to be controlled.

• Virtual Entity:

Virtual Entity is a representation of the Physical Entity in the digital world. For each

Physical Entity, there is a Virtual Entity in the domain model. In the home automation

example, there is one Virtual Entity for the room to be monitored, another for the

appliance to be controlled.

• Device:

Device provides a medium for interactions between Physical Entities and Virtual Entities.

Devices are either attached to Physical Entities or placed near Physical Entities. Devices

are used to gather information about Physical Entities (e.g., from sensors), perform

actuation upon Physical Entities (e.g. using actuators) or used to identify Physical Entities

(e.g., using tags). In the home automation example, the device is a single-board mini

computer which has light sensor and actuator (relay switch) attached to it.

• Resource:

Resources are software components which can be either "on-device" or "network-

resources". On-device resources are hosted on the device and include software

components that either provide information on or enable actuation upon the Physical

Entity to which the device is attached. Network resources include the software

components that are available in network (such as a database). In the home automation

example, the on-device resource is the operating system that runs on the single-board

minicomputer.

• Service:

Services provide an interface for interacting with the Physical Entity. Services access the

resources hosted on the device or the network resources to obtain information about the

Physical Entity or perform actuation upon the Physical Entity.

In the home automation example, there are three services:

(1) a service that sets mode to auto or manual, or retrieves the current mode;

(2) a service that sets the light appliance state to on/off, or retrieves the current light state; and

(3) a controller service that runs as a native service on the device.

 When in auto mode, the controller service monitors the light level and switches the light on/off

and updates the status in the status database. When in manual mode, the controller service

retrieves the current state from the database and switches the light on/off. The process of

deriving the services from the process specification and information model is described in the

later sections.

 Figure 3: Domain model of the home automation IoT system

Step 4: Information Model Specification

The fourth step in the IoT design methodology is to define the Information Model.

Information Model defines the structure of all the information in the IoT system, for example,

attributes of Virtual Entities, relations, etc. Information model does not describe the specifics of

how the information is represented or stored.

To define the information model, we first list the Virtual Entities defined in the Domain Model.

Information model adds more details to the Virtual Entities by defining their attributes and

relations.

In the home automation example, there are two Virtual Entities - a Virtual Entity for the light

appliance (with attribute - light state) and a Virtual Entity for the room (with attribute - light

level). Figure 4 shows the Information Model for the home automation system example.

 Figure 4: Information model of the home automation IoT system

Step 5: Service Specifications

The fifth step in the IoT design methodology is to define the service specifications.

Service specifications define the services in the IoT system, service types, service inputs/output,

service endpoints, service schedules, service preconditions and service effects.

Figure 5 shows an example of deriving the services from the process specification and

information model for the home automation IoT system.

From the process specification and information model, we identify the states and attributes. For

each state and attribute we define a service. These services either change the state or attribute

values or retrieve the current values.

For example, the Mode service sets mode to auto or manual or retrieves the current mode. The

State service sets the light appliance state to on/off or retrieves the current light state.

The Controller service monitors the light level in auto mode and switches the light on/off and

updates the status in the status database. In manual mode, the controller service, retrieves the

current state from the database and switches the light on/off

Figure 5: Deriving services from process specification and information model for home

automation IoT system

Figures 6, 7 and 8 show specifications of the controller, mode and state services the home

automation system.

The Mode service is a RESTful web service that sets mode auto or manual (PUT request), or

retrieves the current mode (GET request).

The mode updated to/retrieved from the database. The State service is a RESTful web service

that see the light appliance state to on/off (PUT request), or retrieves the current light state (GE

request).

The state is updated to/retrieved from the status database. The Controller service runs as a native

service on the device. When in auto mode, the controller service monitors the light level and

switches the light on/off and updates the status in the status database. When in manual mode, the

controller service retrieves the current state from the database and switches the light on/off.

 Figure 6: Controller service of the home automation IoT system

Step 6: loT Level Specification

The sixth step in the IoT design methodology is to define the loT level for the system. In

module-1, we defined five IoT deployment levels. Figure 9 shows the deployment level of the

home automation IoT system, which is level-1.

Step 7: Functional View Specification

The seventh step in the loT design methodology is to define the Functional View.

The Functional View (FV) defines the functions of the loT systems grouped into various

Functional Groups (Fs).

Each Functional Group either provides functionalities for interacting with instances of concepts

defined in the Domain Model or provides information related to these concepts

The Functional Groups (FG) included in a Functional View include:

• Device:

The device FG contains devices for monitoring and control. In the home automation

example, the device FG includes a single board mini-computer, a light sensor and a relay

switch (actuator).

• Communication:

The communication FG handles the communication for the IoT system. The

communication FG includes the communication protocols that form the backbone of IoT

systems and enable network connectivity. The communication FG also includes the

communication APIs (such as REST and WebSocket) that are used by the services and

applications to exchange data over the network.

In the home automation example the communication protocols include802.11 (link layer),

IPv4/IPv6 (network layer), TCP (transport layer), and HTTP (application layer). The

communication API used in the home automation examples is a REST-based API

• Services:

The service FG includes various services involved in the IoT system such as services for

device monitoring, device control services, data publishing services and services for

device discovery. In the home automation example, there are two REST services (mode

and state service) and one native service (controller service).

 Figure 7: Service specification for home automation IoT system - mode service

Figure 8: Service specification for home automation IoT system - state service

Sensor and a relay switch (actuator)

• Management:

The management FG includes all functionalities that are needed to configure and manage

the IoT system.

• Security:

The security FG includes security mechanisms for the IoT system such as authentication,

authorization, data security, etc.

• Application:

The application FG includes applications that provide an interface to the users to control

and monitor various aspects of the IoT system. Applications also allow users to view the

system status and the processed data.

IoT device maps to the Device FG (sensors, actuators devices, computing devices) and the

Management FG (device management). Resources map to the Device FG (on-device

resource) and Communication FG (communication APIs and protocols). Controller service

maps to the Services FG (native service). Web Services map to Services FG. Database maps

to the Management FG (database management) and Security FG (database security).

Application maps to the Application FG (web application, application and database servers),

Management FG (app management) and Security FG (app security).

 Figure 9: Deployment design of the home automation IoT system

Figure 10 shows an example of mapping deployment level to functional groups for home

automation IoT system.

Step 8: Operational View Specification

The eighth step in the IoT design methodology is to define the Operational View Specifications.

In this step, various options pertaining to the IoT system deployment and operation are defined,

such as, service hosting options, storage options, device options, application hosting options, etc.

Figure 11 shows an example of mapping functional groups to operational view specifications for

home automation IoT system.

Operational View specifications for the home automation example are as follows:

• Devices:

Computing device (Raspberry Pi), light dependent resistor (sensor), relay switch

(actuator).

• Communication APIs:

REST APIs

• Communication Protocols:

Link Layer - 802.11, Network Layer - IPv4/IPv6, Transport - TCP, Application - HTTP.

• Services:

 1. Controller Service - Hosted on device, implemented in Python and run as a

 native service.

 2. Mode service - REST-ful web service, hosted on device, implemented with

 Django-REST Framework.

 3. State service - REST-ful web service, hosted on device, implemented with

 Django-REST Framework.

• Application:

Web Application - Django Web Application,

Application Server - Django App Server,

Database Server - MySQL.

• Security:

Authentication: Web App,

Database Authorization: Web App, Database

• Management:

Application Management - Django App Management

Database Management - MySQL DB Management,

Device Management - Raspberry Pi device Management.

Step 9: Device & Component Integration

The ninth step in the IoT design methodology is the integration of the devices and components.

Figure 11 shows a schematic diagram of the home automation IoT system.

The devices and components used in this example are Raspberry Pi minicomputer, LDR sensor

and relay switch actuator.

Step 10: Application Development

The final step in the IoT design methodology is to develop the IoT application.

Figure 12 shows a screenshot of the home automation web application.

The application has controls for the mode (auto on or auto off) and the light (on or off). In the

auto mode, the IoT system controls the light appliance automatically based on the lighting

conditions in the room.

When auto mode is enabled the light control in the application is disabled and it reflects the

current state of the light. When the auto mode is disabled, the light control is enabled and it is

used for manually controlling the light.

Figure 11: Schematic diagram of the home automation IoT system showing the device, sensor

and actuator integrated

Case Study on loT System for Weather Monitoring

The purpose of the weather monitoring system is to collect data on environmental conditions

such as temperature, pressure, humidity and light in an area using multiple end nodes.

The end nodes send the data to the cloud where the data is aggregated and analyzed.

Figure 13 shows the process specification for the weather monitoring system. The process

specification shows that the sensors are read after fixed intervals and the sensor measurements

are stored.

Figure 14 shows the domain model for the weather monitoring system.

In this domain model the physical entity is the environment which is being monitored.

There is a virtual entity for the environment. Devices include temperature sensor, pressure

sensor, humidity sensor, light sensor and single-board minicomputer. Resources are software

components which can be either on-device or network-resources.

Services include the controller service that monitors the temperature, pressure, humidity and

light and sends the readings to the cloud.

 Figure 12: Home automation web application screenshot

 Figure 13: Process specification for weather monitoring IoT system

 relates to monitor

 Associated with

 Exposes

 Associated with

 hosts

 attached to attached to

 Device

 Mini-computer

Human User

 User

Active Digital

Artefact

App

Physical Entity

Environment

Virtual Entity

Environment

Service

Resource

On-Device
Resource

Network
Resource

 Sensor

Temperature

Sensor

Sensor

Pressure

Sensor

Sensor

Humidity

Sensor

Sensor

Light

Sensor

 Invokes/subscribes

 Figure 14: Domain model for weather monitoring IoT system

Figure 18 shows an example of mapping deployment level to functional groups for the weather

monitoring system.

Figure 19 shows an example of mapping functional groups to operational view specifications for

the weather monitoring system.

Figure 20 shows a schematic diagram of the weather monitoring system.

The devices and components used in this example are Raspberry Pi minicomputer, temperature

sensor, humidity sensor, pressure sensor and LDR sensor.

Figure 15: Deriving services from process specification & information model for weather

monitoring IOT system

Motivation for Using Python

We explain the motivation for using Python for developing IoT systems. Python is a minimalistic

language with English-like keywords and fewer syntactical constructions as compared to other

languages. This makes Python easier to learn and understand.

Moreover, Python code is compact as compared to other languages.

Python is an interpreted language and does not require an explicit compilation step.

The Python interpreter converts the Python code to the intermediate byte code, specific to the

system.

Python is supported on wide range of platforms, hence Python code is portable

has Output has Schedule

 Figure 16: Controller service of the weather monitoring IOT system

Service

Name: Controller

Type:Native

Schedule

Interval:

Every15 Sec

Output

Temperature

Pressure

Humidity

Light

Figure 17: Deployment design of the weather monitoring IOT system

Figure 18: Mapping functional groups to operational view for the weather monitoring IOT

system

IOT SYSTEMS - LOGICAL DESIGN USING PYTHON

Python is a general-purpose high level programming language.

There is limited library support for the 3.x versions with operating systems such as Linux and

Mac still using Python 2.x as default language.

Here the exercises and examples in have been developed with Python version 2.7.

The main characteristics of Python are:

Multi-paradigm programming language

Python supports more than one programming paradigms including object-oriented programming

and structured programming

Interpreted Language

Python is an interpreted language and does not require an explicit compilation step. The Python

interpreter executes the program source code directly, statement by statement, as a processor or scripting

engine does.

Interactive Language

Python provides an interactive mode in which the user can submit commands at the Python prompt and

interact with the interpreter directly.

The key benefits of Python are:

Easy-to-learn, read and maintain

Python is a minimalistic language with relatively few keywords, uses English keywords and has fewer

syntactical constructions as compared to other languages. Reading Python programs is easy with pseudo-

code like constructs. Python is easy to learn yet an extremely powerful language for a wide range of

applications. Due to its simplicity, programs written in Python are generally easy to maintain.

Object and Procedure Oriented

Python supports both procedure-oriented programming and object-oriented programming Procedure

oriented paradigm allows programs to be written around procedures or functions that allow reuse of code.

Procedure oriented paradigm allows programs to be written an objects that include both data and

functionality.

Extendable

Python is an extendable language and allows integration of low-level modules written in

languages such as C/C++. This is useful when you want to speed up a critical portion of a

program

Scalable

Due to the minimalistic nature of Python, it provides a manageable structure for large programs.

Portable

Since Python is an interpreted language, programmers do not have to worry about compilation,

linking and loading of programs. Python programs can be directly executed from source code

and copied from one machine to other without worrying about portability. The Python interpreter

converts the source code to an intermediate form called byte codes and then translates this into

the native language of your specific system and then runs it.

Broad Library Support

Python has a broad library support and works on various platforms such as Windows,

Linux, Mac, etc. There are a large number of Python packages available for various

applications such as machine learning, image processing, network programming,

cryptography, etc.

INSTALLING PYTHON

Python is a highly portable language that works on various platforms such as Windows, Linux,

Mac, etc. This section describes the Python installation steps for Windows and Linux:

Windows

Python binaries for Windows can be downloaded from http://www.python.org/getit. For the

examples and exercise in this book, you would require Python 2.7 which can be directly

downloaded from: http://www.python.org/ftp/python/2.7.5/python-2.7.5.msi Once the python

binary is installed you can run the python shell at the command prompt using > python

SUMMARY

• Python is a general-purpose, high level programming language that supports more than

one programming paradigms including object-oriented programming and structured

programming.

• Python is an interpreted language and does not require an explicit compilation step.

• Python provides an interactive mode in which the user can submit commands at the

Python prompt and interact with the interpreter directly.

• The design methodology for IoT system design which is independent of specific product,

service or programming language.

• The first step in IoT system design methodology is to define the purpose and

requirements of the system.

• In the second step, the use cases of the IoT system are formally described based on the

purpose and requirement specifications.

• The third step is to define the Domain Model which describes the main concepts, entities

and objects in the domain of IoT system to be designed.

• The fourth step is to define the Information Model which defines the structure of all the

information in the IoT system.

• The fifth step is to define the Functional View which defines the functions of the loT

systems grouped into various Functional Groups.

• The sixth step is to define the service specifications which define the services in the IoT

system, service types, service inputs/output, service endpoints, service schedules, service

preconditions and service effects.

• The seventh step is to define the Deployment & Operational View Specifications in

which various options pertaining to the IoT system deployment and operation are

defined.

• The eight step is the integration of the devices and components.

• The final step in the IoT design methodology is to develop the IoT application.

ASSIGNMENT QUESTIONS

1. What is the difference between a physical and virtual entity?

2. What is an IoT device?

3. What is the purpose of information model?

4. What are the various service types?

5. What is the need for a controller service?

overview of RFID

Radio-Frequency Identification (RFID) is a technology that uses wireless communication to identify,

track, and manage objects, people, or animals. It typically involves two main components: RFID tags

and RFID readers.

RFID Tags:

Microchip: Contains a unique identifier and possibly additional information.

Antenna: Facilitates communication with the RFID reader through radio waves.

Encapsulation: Protects the microchip and antenna.

RFID Readers:

Antenna: Sends signals to RFID tags and receives responses.

Transceiver: Processes the data received from the tags and communicates with a central system.

Controller: Manages communication between the RFID reader and external systems.

Working Principle:

When an RFID tag comes into the range of an RFID reader, the reader sends an interrogation signal.

The RFID tag, powered by this signal, responds by transmitting its unique identifier and, if applicable,

additional data.

The RFID reader captures this information and communicates it to a central database or system.

RFID Frequencies:

RFID operates at various frequencies, including low-frequency (LF), high-frequency (HF), and ultra-

high-frequency (UHF).

LF (125-134 kHz), HF (13.56 MHz), and UHF (860-960 MHz) frequencies are commonly used.

Applications:

• Inventory Management: RFID is widely used in retail and logistics for tracking inventory,

reducing errors, and improving efficiency.

• Access Control: RFID tags are used in access cards for secure entry to buildings or restricted

areas.

• Supply Chain Management: RFID helps monitor the movement of goods, improving visibility

and reducing the chances of loss or theft.

• Asset Tracking: Valuable assets, such as equipment or tools, can be tagged and tracked using

RFID.

• Passports and ID Cards: Some countries use RFID technology in passports and identification

cards for secure authentication.

Advantages:

Automation: RFID enables automation in various processes, reducing the need for manual

intervention.

Accuracy:

RFID systems provide accurate and real-time data, minimizing errors.

low power design Bluetooth low energy

Bluetooth Low Energy (BLE) is a wireless communication technology designed for short-range

communication with low power consumption. It's commonly used in applications where power

efficiency is critical, such as wearable devices, healthcare sensors, and IoT (Internet of Things) devices.

Designing a low-power Bluetooth Low Energy system involves several key considerations:

Low Power Microcontrollers:

Choose microcontrollers or systems-on-chip (SoCs) that are specifically designed for low power

consumption.

Utilize low-power modes on the microcontroller, such as sleep and standby modes, to reduce power

consumption during idle periods.

Transmit Power Control:

Adjust the transmit power based on the communication range requirements. Lowering the transmit

power can significantly reduce power consumption.

Data Packet Optimization:

Minimize the amount of data transmitted by optimizing the size of data packets. Smaller packets lead

to shorter transmission times and lower power consumption.

Voltage Regulation:

Implement efficient voltage regulation to ensure that the system operates at the lowest possible

voltage without compromising functionality.

Range extension technique

Extending the range of a wireless communication system, such as Bluetooth or Wi-Fi, can be

essential in various applications.

Mesh Networking:

Mesh networking is a type of network topology where each node in the network can act as a relay for

data transmission. This can be particularly useful for extending the range of a network. In a mesh

network, nodes are interconnected, and each node can relay data to other nodes. This relay

functionality helps in extending the effective range of communication. If a direct communication link

between two nodes is not possible due to distance or obstacles, intermediate nodes can relay the data

to bridge the gap. if one node fails or is out of range, the network can dynamically reroute data through

other available nodes. This adaptive nature contributes to improved reliability and range extension.

Data Mining:

Data mining is the process of discovering patterns, trends, and insights from large datasets. data mining

can play a role in optimizing network performance and understanding communication patterns within

a mesh network. Predictive modelling using data mining can help anticipate network congestion or

potential failures. This information can be used to dynamically adjust the mesh network, ensuring

optimal performance and reliability.

Data intensive IoT for continuous recognition application

Implementing a data-intensive Internet of Things (IoT) system for continuous recognition applications

involves managing large volumes of data generated by sensors and devices. It involves

1. Sensor Selection and Data Collection:

Choose sensors that provide accurate and reliable data for continuous recognition. Examples include

cameras, microphones, accelerometers, and environmental sensors.

2. Data Preprocessing:

Apply filtering techniques to reduce noise and irrelevant data.

3. Cloud Infrastructure:

Utilize scalable cloud storage solutions to accommodate large volumes of data and leverage big data

processing tools and frameworks (e.g., Apache Spark) for handling and analysing large datasets.

4. Data Security and Privacy:

Implement end-to-end encryption to secure data during transmission.

5. Continuous Recognition Algorithms:

Develop or deploy machine learning models for continuous recognition tasks.

6. Real-Time Analytics:

Implement real-time analytics for immediate insights from streaming data.

Overview of android

Android is a mobile operating system developed by a consortium of developers known as the Open

Handset Alliance and commercially sponsored by Google. It is designed primarily for touchscreen

mobile devices such as smartphones and tablets. key aspects of the Android operating system is

Architecture:

Android is built on the Linux kernel, which provides the core system services such as security,

memory management, process management, and networking. It includes a set of C/C++ libraries for

core system functionality, such as the SQLite database engine, WebKit for web browsing, and

OpenGL for graphics rendering. Android applications run in the Android Runtime, which is

responsible for executing and managing app code. ART is the default runtime starting from Android

5.0 (Lollipop).

Android provides a rich set of APIs and Java libraries for developing mobile applications. Developers

can access features such as UI design, data storage, connectivity, multimedia, and more

Android applications are typically distributed through the Google Play Store, where users can

browse, download, and install apps.

Android supports various wireless communication technologies, including Wi-Fi, Bluetooth, NFC, and

mobile data (3G, 4G/LTE).

IOS app development tool

iOS app development tools are a set of software tools used by developers to create, design, test, and

deploy iOS applications. These tools include programming languages such as Swift and Objective-C,

integrated development environments (IDEs) such as Xcode, frameworks such as UIKit and SwiftUI,

and performance analysis tools such as Instruments. They allow developers to create a wide range of

applications, from simple utilities to complex games and enterprise-level solutions.

Using iOS app development tools, developers have the ability to create robust and efficient

applications that run on Apple’s operating system and take advantage of the latest technologies and

features available on iOS devices.

Internet of everything

The term "Internet of Everything" (IoE) refers to the extension of the Internet of Things (IoT) concept

to include not only devices and things but also the connections, data, and interactions among them. It

represents a vision of a fully interconnected world where people, processes, data, and things are

seamlessly integrated, creating new opportunities for innovation, efficiency, and improved

experiences. Cisco is often credited with popularizing the term IoE.

The Internet of Everything (IoE) is a concept that extends the Internet of Things (IoT) emphasis

on machine-to-machine (M2M) communications to describe a more complex system that also

encompasses people and processes.

https://internetofthingsagenda.techtarget.com/definition/Internet-of-Things-IoT
https://internetofthingsagenda.techtarget.com/definition/machine-to-machine-M2M

