
5th Semester

Advanced Computer Architecture

Objectives

• To understand the advance hardware and software issues of computer architecture

• To understand the multi-processor architecture & connection mechanism

• To understand multi-processor memory management

Module-I: (10 Hours)

Microprocessor and Microcontroller, RISC and CISC architectures, Parallelism, Pipelining fundamentals,

Arithmetic and Instruction pipelining, Pipeline Hazards, Superscalar Architecture, Super Pipelined

Architecture, VLIW Architecture, SPARC and ARM processors.

Module-II: (10 Hours)

Basic Multiprocessor Architecture: Flynn’s Classification, UMA, NUMA, Distributed Memory

Architecture, Array Processor, Vector Processors.

Module-III: (10 Hours)

Interconnection Networks: Static Networks, Network Topologies, Dynamic Networks, Cloud computing.

Module IV (10 Hours)

Memory Technology: Cache, Cache memory mapping policies, Cache updating schemes, Virtual

memory, Page replacement techniques, I/O subsystems.

Outcomes

• Ability to analyze the abstraction of various advanced architecture of a computer

• Ability to analyze the multi-processor architecture & connection mechanism

• Ability to work out the tradeoffs involved in designing a modern computer system

Books:

[1] John L. Hennessy and David A. Patterson, Computer Architecture: A Quantitative Approach, Morgan

Kaufmann, 6th edition, 2017

[2] Carl Hamacher, Zvonko Vranesic, Safwat Zaky, Computer Organization, McGraw Hill, 5th Ed, 2014

[3] Kai Hwang, Advanced Computer Architecture: Parallelism, Scalability, Programmability,

 McGraw-Hill, 3rd Ed, 2015

Digital Learning Resources:

Course Name: Advanced Computer Architecture

Course Link: https://nptel.ac.in/courses/106/103/106103206/

Course Instructor: Prof.John Jose, IIT, Guwahati

Course Name: High Performance Computer Architecture

Course Link: https://nptel.ac.in/courses/106/105/106105033/

Course Instructor: Prof.A. Pal, IIT, Kharagpur

Introduction to microprocessor and microcontroller
• A microprocessor is an IC which has only the CPU inside them, i.e. only the processing powers

such as Intel’s Pentium 1,2,3,4, core 2 duo, i3, i5 etc. These microprocessors don’t have RAM,

ROM, and other peripherals on the chip. A system designer has to add them externally to make

them functional.

• Applications of microprocessor include Desktop PC’s, Laptops, notepads etc.

• A microcontroller has a CPU, in addition with a fixed amount of RAM, ROM and other peripherals

all embedded on a single chip. At times it is also termed as a mini computer or a computer on a

single chip. Today different manufacturers produce microcontrollers with a wide range of features

available in different versions. Some manufacturers are ATMEL, Microchip, TI, Freescale,

Philips, Motorola etc.

• Microcontrollers are designed to perform specific tasks. Specific means applications where the

relationship of input and output is defined. Depending on the input, some processing needs to be

done and output is delivered.

• For example, keyboards, mouse, washing machine, digicam, pendrive, remote, microwave, cars,

bikes, telephone, mobiles, watches, etc. Since the applications are very specific, they need small

resources like RAM, ROM, I/O ports etc and hence can be embedded on a single chip. This in turn

reduces the size and the cost.

• Microprocessors find applications where tasks are unspecific like developing software, games,

websites, photo editing, creating documents etc. In such cases the relationship between input and

output is not defined. They need high amount of resources like RAM, ROM, I/O ports etc.

• The clock speed of the Microprocessor is quite high as compared to the microcontroller. Whereas

the microcontrollers operate from a few MHz to 30 to 50 MHz, today’s microprocessors operate

above 1GHz as they perform complex tasks.

• Generally, a microcontroller is far cheaper than a microprocessor. However, a microcontroller

cannot be used in place of microprocessor and using a microprocessor is not advised in place of a

microcontroller as it makes the application quite costly.

• A microprocessor cannot be used stand alone. They need other peripherals like RAM, ROM,

buffer, I/O ports etc and hence a system designed around a microprocessor is quite costly.

Evolution of Microprocessors
• Transistor was invented in 1948 (23 December 1947 in Bell lab).

• IC was invented in 1958 (Fair Child Semiconductors) By Texas Instruments J kilby.

• First microprocessor was invented by INTEL (INTegrated ELectronics).

Size of microprocessor – 4 bit

Name Year Of Invention Clock Speed

Number Of

Transistors Inst. Per Sec

INTEL

4004/4040

1971 by Ted Hoff and

Stanley Mazor 740 KHz 2300 60,000

Size of microprocessor – 8 bit

Name Year Of Invention

Clock

Speed

Number Of

Transistors Inst. Per Sec

8008 1972 500 KHz 50,000

8080 1974 2 MHz 60,000 10 times faster than 8008

8085 1976 (16 bit address bus) 3 MHz 6500 769230

Size of microprocessor – 16 bit

Name Year Of Invention Clock Speed

Number Of

Transistors

Inst. Per

Sec

8086

1978 (multiply and divide instruction,

16 bit data bus and 20 bit address bus)

4.77 MHz,

8MHz, 10MHz 29000

2.5

Million

8088

1979 (cheaper version of 8086 and 8 bit

external bus)

2.5

Million

80186/

80188

1982 (80188 cheaper version of 80186,

and addtional components like interuppt

controller, clock generator, local bus

controller,counters) 6 MHz

80286

1982 (data bus 16bit and address bus 24

bit) 8 MHz 134000 4 Million

Size of microprocessor – 32 bit

Name Year Of Invention

Clock

Speed

Number Of

Transistors Inst. Per Sec

INTEL

80386

1986 (other versions 80386DX,

80386SX, 80386SL and data bus 32

bit address bus 32 bit)

16 MHz –

33 MHz 275000

INTEL

80486

1986 (other versions 80486DX,

80486SX, 80486DX2, 80486DX4)

16 MHz –

100 MHz

1.2 Million

transistors

8 KB of cache

memory

PENTIUM 1993 66 MHz

Cache memory 8

bit for instructions

8 bit for data

Size of microprocessor – 64 bit

Name Year Of Invention Clock Speed

Number Of

Transistors Inst. Per Sec

INTEL

core 2

2006 (other versions core2

duo, core2 quad, core2

extreme) 1.2 GHz to 3 GHz

291 Million

transistors

64 KB of L1

cache per core 4

MB of L2 cache

i3, i5, i7 2007, 2009, 2010

2.2GHz – 3.3GHz,

2.4GHz – 3.6GHz,

2.93GHz – 3.33GHz

Generations of microprocessor:

First generation: From 1971 to 1972 the era of the first generation came which brought microprocessors

like INTEL 4004 Rockwell international PPS-4 INTEL 8008 etc.

Second generation: The second generation marked the development of 8 bit microprocessors from 1973

to 1978. Processors like INTEL 8085 Motorola 6800 and 6801 etc came into existence.

Third generation: The third generation brought forward the 16 bit processors like INTEL

8086/80186/80286 Motorola 68000 68010 etc. From 1979 to 1980 this generation used the HMOS

technology.

Fourth generation: The fourth generation came into existence from 1981 to 1995. The 32 bit processors

using HMOS fabrication came into existence. INTEL 80386 and Mororola 68020 are some of the popular

processors of this generation.

Fifth generation: From 1995 till now we are in the fifth generation. 64 bit processors like PENTIUM,

celeron, dual, quad and octa core processors came into existence.

Types of microprocessors:

Complex instruction set microprocessor: The processors are designed to minimise the number of

instructions per program and ignore the number of cycles per instructions. The compiler is used to translate

a high-level language to assembly level language because the length of code is relatively short and an

extra RAM is used to store the instructions. These processors can do tasks like downloading, uploading

and recalling data from memory. Apart from these tasks these microprocessors can perform complex

mathematical calculation in a single command.

Example: IBM 370/168, VAX 11/780

Reduced instruction set microprocessor: These processor are made according to function. They are

designed to reduce the execution time by using the simplified instruction set. They can carry out small

things in specific commands. These processors complete commands at faster rate. They require only one

clock cycle to implement a result at uniform execution time. There are number of registers and less number

of transistors. To access the memory location LOAD and STORE instructions are used.

Example: Power PC 601, 604, 615, 620

Super scalar microprocessor: These processors can perform many tasks at a time. They can be used for

ALUs and multiplier like array. They have multiple operation unit and perform many tasks, executing

multiple commands.

Application specific integrated circuit: These processors are application specific like for personal digital

assistant computers. They are designed according to proper specification.

Digital signal multiprocessor: These processors are used to convert signals like analog to digital or

digital to analog. The chips of these processors are used in many devices such as RADAR SONAR home

theatres etc.

Advantages of microprocessor –

• High processing speed

• Compact size

• Easy maintenance

• Can perform complex mathematics

• Flexible

• Can be improved according to requirement

Disadvantages of microprocessors –

• Overheating occurs due to overuse

• Performance depends on size of data

• Large board size than microcontrollers

• Most microprocessors do not support floating point operations

Pipelining
To improve the performance of a CPU we have two options:

1) Improve the hardware by introducing faster circuits.

2) Arrange the hardware such that more than one operation can be performed at the same time.

Since, there is a limit on the speed of hardware and the cost of faster circuits is quite high, we have to

adopt the 2nd option.

Pipelining: Pipelining is a process of arrangement of hardware elements of the CPU such that its overall

performance is increased. Simultaneous execution of more than one instruction takes place in a pipelined

processor.

Example: Consider a water bottle packaging plant. Let there be 3 stages that a bottle should pass through,

Inserting the bottle(I), Filling water in the bottle(F), and Sealing the bottle(S). Let us consider these stages

as stage 1, stage 2 and stage 3 respectively. Let each stage take 1 minute to complete its operation.

Now, in a non-pipelined operation, a bottle is first inserted in the plant, after 1 minute it is moved to stage

2 where water is filled. Now, in stage 1 nothing is happening. Similarly, when the bottle moves to stage

3, both stage 1 and stage 2 are idle. But in pipelined operation, when the bottle is in stage 2, another bottle

can be loaded at stage 1. Similarly, when the bottle is in stage 3, there can be one bottle each in stage 1

and stage 2. So, after each minute, we get a new bottle at the end of stage 3. Hence, the average time taken

to manufacture 1 bottle is:

Without pipelining = 9/3 minutes = 3m
I F S | | | | | |

| | | I F S | | |

| | | | | | I F S (9 minutes)

With pipelining = 5/3 minutes = 1.67m
I F S | |

| I F S |

| | I F S (5 minutes)

Thus, pipelined operation increases the efficiency of a system.

Design of a basic pipeline

In a pipelined processor, a pipeline has two ends, the input end and the output end. Between these ends,

there are multiple stages/segments such that output of one stage is connected to input of next stage and

each stage performs a specific operation.

Interface registers are used to hold the intermediate output between two stages. These interface registers

are also called latch or buffer.

All the stages in the pipeline along with the interface registers are controlled by a common clock.

Execution in a pipelined processor:

Execution sequence of instructions in a pipelined processor can be visualized using a space-time diagram.

For example, consider a processor having 4 stages and let there be 2 instructions to be executed. We can

visualize the execution sequence through the following space-time diagrams:

Non overlapped execution:
STAGE /

CYCLE 1 2 3 4 5 6 7 8
S1 I1 I2

S2 I1 I2

S3 I1 I2

S4 I1 I2

Total time = 8 Cycle

Overlapped execution:
STAGE / CYCLE 1 2 3 4 5
S1 I1 I2

S2 I1 I2

S3 I1 I2

S4 I1 I2

Total time = 5 Cycle

Pipeline Stages
RISC processor has 5 stage instruction pipeline to execute all the instructions in the RISC instruction set.

Following are the 5 stages of RISC pipeline with their respective operations:

Stage 1 (Instruction Fetch)

In this stage the CPU reads instructions from the address in the memory whose value is present in the

program counter.

Stage 2 (Instruction Decode)

In this stage, instruction is decoded and the register file is accessed to get the values from the registers

used in the instruction.

Stage 3 (Instruction Execute)

In this stage, ALU operations are performed.

Stage 4 (Memory Access)

In this stage, memory operands are read and written from/to the memory that is present in the instruction.

Stage 5 (Write Back)

In this stage, computed/fetched value is written back to the register present in the instructions.

Performance of a pipelined processor
Consider a ‘k’ segment pipeline with clock cycle time as ‘Tp’. Let there be ‘n’ tasks to be completed in

the pipelined processor. Now, the first instruction is going to take ‘k’ cycles to come out of the pipeline

but the other ‘n – 1’ instructions will take only ‘1’ cycle each, i.e, a total of ‘n – 1’ cycles. So, time taken

to execute ‘n’ instructions in a pipelined processor:
 ETpipeline = k + n – 1 cycles

 = (k + n – 1) Tp

In the same case, for a non-pipelined processor, execution time of ‘n’ instructions will be:
 ETnon-pipeline = n * k * Tp

So, speedup (S) of the pipelined processor over non-pipelined processor, when ‘n’ tasks are executed on

the same processor is:
 S = Performance of pipelined processor /

 Performance of Non-pipelined processor

As the performance of a processor is inversely proportional to the execution time, we have,
 S = ETnon-pipeline / ETpipeline

 => S = [n * k * Tp] / [(k + n – 1) * Tp]

 S = [n * k] / [k + n – 1]

When the number of tasks ‘n’ are significantly larger than k, that is, n >> k
 S = n * k / n

 S = k

where ‘k’ are the number of stages in the pipeline.

Also, Efficiency = Given speed up / Max speed up = S / Smax

We know that, Smax = k

So, Efficiency = S / k

Throughput = Number of instructions / Total time to complete the instructions

So, Throughput = n / (k + n – 1) * Tp

Note: The cycles per instruction (CPI) value of an ideal pipelined processor is 1

Problem (example):

 Consider a pipeline having 4 phases with duration 60, 50, 90 and 80 ns. Given latch delay is 10 ns.

Calculate-

1. Pipeline cycle time

2. Non-pipeline execution time

3. Speed up ratio

4. Pipeline time for 1000 tasks

5. Sequential time for 1000 tasks

6. Throughput

 Solution-

 Given-

• Four stage pipeline is used k=4

• Delay of stages = 60, 50, 90 and 80 ns

• Latch delay or delay due to each register = 10 ns

1: Pipeline Cycle Time-

 Cycle time

= Maximum delay due to any stage + Delay due to its register

= Max { 60, 50, 90, 80 } + 10 ns = 90 ns + 10 ns = 100 ns

2: Non-Pipeline Execution Time- (no latches hence latch delay=0)

 Non-pipeline execution time for one instruction

= 60 ns + 50 ns + 90 ns + 80 ns = 280 ns

3: Speed Up Ratio-

 Speed up

= Non-pipeline execution time / Pipeline execution time

= 280 ns / 100 ns

= 2.8

4: Pipeline Time For 1000 Tasks-

 Pipeline time for 1000 tasks

= Time taken for 1st task + Time taken for remaining 999 tasks

= 1 x 4 clock cycles + 999 x 1 clock cycle

= 4 x cycle time + 999 x cycle time

= 4 x 100 ns + 999 x 100 ns

= 400 ns + 99900 ns

= 100300 ns

5: Sequential Time For 1000 Tasks-

Non-pipeline time for 1000 tasks

= 1000 x Time taken for one task

= 1000 x 280 ns

= 280000 ns

6: Throughput-

Throughput for pipelined execution

= Number of instructions executed per unit time

= 1000 tasks / 100300 ns

Dependencies in a pipelined processor

Pipeline hazards
There are mainly three types of dependencies possible in a pipelined processor. These are :

1) Structural Dependency

2) Control Dependency

3) Data Dependency

These dependencies may introduce stalls in the pipeline.

Stall : A stall is a cycle in the pipeline without new input.

1. Structural dependency

This dependency arises due to the resource conflict in the pipeline. A resource conflict is a situation when

more than one instruction tries to access the same resource in the same cycle. A resource can be a register,

memory, or ALU.

Example:
INSTRUCTION / CYCLE 1 2 3 4 5

I1 IF(Mem) ID EX Mem

I2 IF(Mem) ID EX

I3 IF(Mem) ID EX

I4 IF(Mem) ID

• In the above scenario, in cycle 4, instructions I1 and I4 are trying to access same resource (Memory)

which introduces a resource conflict.

• To avoid this problem, we have to keep the instruction on wait until the required resource (memory

in our case) becomes available. This wait will introduce stalls in the pipeline as shown below:

CYCLE 1 2 3 4 5 6 7 8

I1 IF(Mem) ID EX Mem WB

I2 IF(Mem) ID EX Mem WB

I3 IF(Mem) ID EX Mem WB

I4 – – – IF(Mem)

Solution for structural dependency

To minimize structural dependency stalls in the pipeline, we use a hardware mechanism called Renaming.

Renaming: According to renaming, we divide the memory into two independent modules used to store

the instruction and data separately called Code memory (CM) and Data memory (DM) respectively. CM

will contain all the instructions and DM will contain all the operands that are required for the instructions.
INSTRUCTION/

CYCLE 1 2 3 4 5 6 7
I1 IF(CM) ID EX DM WB

I2 IF(CM) ID EX DM WB

I3 IF(CM) ID EX DM WB

I4 IF(CM) ID EX DM

I5 IF(CM) ID EX

I6 IF(CM) ID

I7 IF(CM)

2. Control Dependency (Branch Hazards)

This type of dependency occurs during the transfer of control instructions such as BRANCH, CALL, JMP,

etc. On many instruction architectures, the processor will not know the target address of these instructions

when it needs to insert the new instruction into the pipeline. Due to this, unwanted instructions are fed to

the pipeline.

Consider the following sequence of instructions in the program:

100: I1

101: I2 (JMP 250)

102: I3

.

.

250: BI1

Expected output: I1 -> I2 -> BI1

NOTE: Generally, the target address of the JMP instruction is known after ID stage only.

INSTRUCTION/ CYCLE 1 2 3 4 5 6

I1 IF ID EX MEM WB

I2 IF ID (PC:250) EX Mem WB

I3 IF ID EX Mem

BI1 IF ID EX

Output Sequence: I1 -> I2 -> I3 -> BI1

So, the output sequence is not equal to the expected output, that means the pipeline is not implemented

correctly.

To eliminate this problem we need to stop the Instruction fetch until we get target address of branch

instruction. This can be implemented by introducing delay slot until we get the target address.
INSTRUCTION/ CYCLE 1 2 3 4 5 6

I1 IF ID EX MEM WB

I2 IF ID (PC:250) EX Mem WB

Delay – – – – – –

BI1 IF ID EX

Output Sequence: I1 -> I2 -> Delay (Stall) -> BI1

As the delay slot performs no operation, this output sequence is equal to the expected output sequence.

But this slot introduces stall in the pipeline.

Solution for Control dependency:

Branch Prediction is the method through which stalls due to control dependency can be eliminated. In this

at 1st stage prediction is done about which branch will be taken. For branch prediction Branch penalty is

zero.

Branch penalty: The number of stalls introduced during the branch operations in the pipelined processor

is known as branch penalty.

NOTE: As we see that the target address is available after the ID stage, so the number of stalls introduced

in the pipeline is 1. Suppose, the branch target address would have been present after the ALU stage, there

would have been 2 stalls. Generally, if the target address is present after the kth stage, then there will be (k

– 1) stalls in the pipeline.

Total number of stalls introduced in the pipeline due to branch instructions = Branch frequency * Branch

Penalty

3. Data Dependency (Data Hazard)
Let us consider an ADD instruction S, such that

S: ADD R1, R2, R3

Addresses read by S = I(S) = {R2, R3}

Addresses written by S = O(S) = {R1}

Now, we say that instruction S2 depends in instruction S1, when

This condition is called Bernstein condition.

Three cases exist:

• Flow (data) dependence: O(S1) ∩ I (S2), S1 → S2 and S1 writes after something read by S2

• Anti-dependence: I(S1) ∩ O(S2), S1 → S2 and S1 reads something before S2 overwrites it

• Output dependence: O(S1) ∩ O(S2), S1 → S2 and both write the same memory location.

Example: Let there be two instructions I1 and I2 such that:

I1: ADD R1, R2, R3

I2: SUB R4, R1, R2

When the above instructions are executed in a pipelined processor, then data dependency condition will

occur, which means that I2 tries to read the data before I1 writes it, therefore, I2 incorrectly gets the old

value from I1.
INSTRUCTION / CYCLE 1 2 3 4
I1 IF ID EX DM

I2 IF ID(Old value) EX

To minimize data dependency stalls in the pipeline, operand forwarding is used.

Operand Forwarding : In operand forwarding, we use the interface registers present between the stages

to hold intermediate output so that dependent instruction can access new value from the interface register

directly.

Considering the same example:

I1: ADD R1, R2, R3

I2: SUB R4, R1, R2
INSTRUCTION / CYCLE 1 2 3 4
I1 IF ID EX DM

I2 IF ID EX

Data Hazards

Data hazards occur when instructions that exhibit data dependence, modify data in different stages of a

pipeline. Hazard cause delays in the pipeline. There are mainly three types of data hazards:

1) RAW (Read after Write) [Flow/True data dependency]

2) WAR (Write after Read) [Anti-Data dependency]

3) WAW (Write after Write) [Output data dependency]

Let there be two instructions I and J, such that J follow I. Then,

1) RAW hazard occurs when instruction J tries to read data before instruction, I writes it.

Eg:

I: R2 <- R1 + R3

J: R4 <- R2 + R3

2) WAR hazard occurs when instruction J tries to write data before instruction I reads it.

Eg:

I: R2 <- R1 + R3

J: R3 <- R4 + R5

3) WAW hazard occurs when instruction J tries to write output before instruction I writes it.

Eg:

I: R2 <- R1 + R3

J: R2 <- R4 + R5

WAR and WAW hazards occur during the out-of-order execution of the instructions.

Pipelining: Types and Stalling
Types of pipeline

1. Uniform delay pipeline:

• In this type of pipeline, all the stages will take same time to complete an operation.

• In uniform delay pipeline, Cycle Time (Tp) = Stage Delay

• If buffers are included between the stages then,

Cycle Time (Tp) = Stage Delay + Buffer Delay

2. Non-Uniform delay pipeline:

• In this type of pipeline, different stages take different time to complete an operation.

• In this type of pipeline, Cycle Time (Tp) = Maximum (Stage Delay)

• For example, if there are 4 stages with delays, 1 ns, 2 ns, 3 ns, and 4 ns, then

Tp = Maximum (1 ns, 2 ns, 3 ns, 4 ns) = 4 ns

• If buffers are included between the stages,

Tp = Maximum (Stage delay + Buffer delay)

Example: Consider a 4-segment pipeline with stage delays (2 ns, 8 ns, 3 ns, 10 ns). Find the

time taken to execute 100 tasks in the above pipeline.

Solution: As the above pipeline is a non-linear pipeline,

Tp = max (2, 8, 3, 10) = 10 ns

We know that ETpipeline = (k + n – 1) Tp = (4 + 100 – 1) 10 ns = 1030 ns

NOTE: MIPS = Million instructions per second

Performance of pipeline with stalls
Speed Up (S) = Performancepipeline / Performancenon-pipeline

=> S = Average Execution Timenon-pipeline / Average Execution Timepipeline

=> S = CPInon-pipeline * Cycle Timenon-pipeline / CPIpipeline * Cycle Timepipeline

Ideal CPI of the pipelined processor is ‘1’. But due to stalls, it becomes greater than ‘1’.

=> S = CPInon-pipeline * Cycle Timenon-pipeline / (1 + Number of stalls per Instruction) * Cycle Timepipeline

As Cycle Timenon-pipeline = Cycle Timepipeline,

Speed Up (S) = CPInon-pipeline / (1 + Number of stalls per instruction)

Dynamic Instruction Scheduling: If the programmer is aware of a pipelined architecture then it may be

possible to rewrite programs statically either manually or using an optimising compiler to separate data

dependencies otherwise they must be detected and resolved by hardware at runtime.

Scoreboarding: A scoreboard is a centralized control logic which uses forwarding logic and register

tagging to keep track of the status of registers and multiple functional units. An issued instruction whose

registers are not available is forwarded to a reservation station (buffer) associated with the functional unit

it will use. When functional units generate new results, some data dependencies can be resolved. When

all registers have valid data the scoreboard enables the instruction execution. Similarly, when a functional

unit finishes, it signals the scoreboard to release the register resources.

Arithmetic Pipeline and Instruction Pipeline
1. Arithmetic Pipeline :

An arithmetic pipeline divides an arithmetic problem into various sub problems for execution in various

pipeline segments. It is used for floating point operations, multiplication and various other computations.

Floating point addition using arithmetic pipeline :

The following sub operations are performed in this case:

• Compare the exponents.

• Align the mantissas.

• Add or subtract the mantissas.

• Normalise the result

First, the two exponents are compared and the larger of two exponents is chosen as the result exponent.

The difference in the exponents then decides how many times we must shift the smaller exponent to the

right. Then after shifting of exponent, both the mantissas get aligned. Finally, the addition of both numbers

take place followed by normalisation of the result in the last segment.

Example:

Let us consider two numbers,

X=0.3214*10^3 and Y=0.4500*10^2

Explanation:

 First of all the two exponents are subtracted to give 3-2=1. Thus 3 becomes the exponent of result

and the smaller exponent is shifted 1 time to the right to give

Y=0.0450*10^3

Finally, the two numbers are added to produce

Z=0.3664*10^3

As the result is already normalized the result remains the same.

The process or flowchart arithmetic pipeline for floating point addition is shown in the diagram.

2. Instruction Pipeline:

• In this a stream of instructions can be executed by overlapping fetch, decode and execute phases

of an instruction cycle. This type of technique is used to increase the throughput of the computer

system. An instruction pipeline reads instruction from the memory while previous instructions are

being executed in other segments of the pipeline. Thus we can execute multiple instructions

simultaneously. The pipeline will be more efficient if the instruction cycle is divided into segments

of equal duration.

• In the most general case computer needs to process each instruction in following sequence of steps:

o Fetch the instruction from memory (FI)

o Decode the instruction (DA)

o Calculate the effective address

o Fetch the operands from memory (FO)

o Execute the instruction (EX)

o Store the result in the proper place

The flowchart for instruction pipeline is shown below.

Let us see an example of instruction pipeline.

Example:

Here the instruction is fetched on first clock cycle in segment 1.

• Now it is decoded in next clock cycle, then operands are fetched and finally the instruction is

executed. We can see that here the fetch and decode phase overlap due to pipelining. By the time

the first instruction is being decoded, next instruction is fetched by the pipeline.

• In case of third instruction we see that it is a branched instruction. Here when it is being decoded

4th instruction is fetched simultaneously. But as it is a branched instruction it may point to some

other instruction when it is decoded. Thus, fourth instruction is kept on hold until the branched

instruction is executed. When it gets executed then the fourth instruction is copied back and the

other phases continue as usual.

Superscalar Architecture
A more useful approach is to equip the processor with multiple processing units to handle several

instructions in parallel in each processing stage. With this arrangement, several instructions start execution

in the same clock cycle and the process is said to use multiple issue. Such processors are capable of

achieving an instruction execution throughput of more than one instruction per cycle. They are known as

‘Superscalar Processors’.

In the above diagram, there is a processor with two execution units; one for integer and one for floating

point operations. The instruction fetch unit is capable of reading the instructions at a time and storing them

in the instruction queue. In each cycle, the dispatch unit retrieves and decodes up to two instructions from

the front of the queue. If there is one integer, one floating point instruction and no hazards, both the

instructions are dispatched in the same clock cycle.

A scalar processor executes scalar instructions, that is instructions operating on single quantity operands

such as integers. As we have seen, the design of such a processor may be pipelined where the staggered

use of the pipeline can improve instruction throughput. A superscalar processor is one which executes

more than one scalar instruction concurrently. This is achieved by having a number of independent

pipelines. A limited form of superscalar operation is present in processors that have, for example, separate

integer and floating point units. After the decode stage the instructions are sent to the appropriate unit and

can execute in parallel. True superscalar operation can only be achieved by fetching a number of

instructions simultaneously and executing them simultaneously.

The objective of superscalar design is to improve performance by exploiting instruction level parallelism

in user programs. We might expect that doubling the number of pipelines would double performance, but

we have seen the problems caused by pipeline hazards in a single pipeline and can see that this problem

is much more critical for superscalar processors and that some of the pipelines will be stalling. One of the

characteristics of RISC designs is that the processor has a simplified instruction set architecture resulting

in fewer data interdependencies. For this reason, virtually all superscalar designs have been based on a

RISC architecture. The superscalar degree is low due to limited instruction parallelism that can be

exploited in ordinary programs.

Instruction issue and completion policies are critical to superscalar processor performance.

When instructions are issued (i.e. initiation of their execution in functional units) in program order it is

called in-order issue. When program order is violated, out-of-order issue is being practiced.

When instructions must be completed (i.e. have altered register and/or memory) in program order, it is

called in-order completion, otherwise out-of-order completion may result. In-order issue is easier to

implement but may not yield the optimal performance. Proper scheduling can avoid stalling the pipelines.

A number of possible scheduling policies are possible. In the examples below, the pipeline cycle is the

minimum time between consecutive exchanges between each stage of the pipeline.

1) In-Order Issue with In-Order Completion:

Assume we have a superscalar pipeline capable of fetching and decoding two instructions at a time. Let's

say there are three separate functional units and that there are two instances of the writeback pipeline

stage.

Let's say we have six instructions with the following constraints:

• I1 requires two cycles to execute.

• I3 and I4 conflict for the same functional unit.

• I5 depends on the value produced by I4.

• I5 and I6 conflict for a functional unit.

Instructions are only decoded up to the point of a dependency or resource conflict. No additional

instructions are decoded until the conflict is resolved. This means a maximum of two instructions can be

in the execute stage as later instructions have a time dependency on earlier ones executing first.

2) In-Order Issue with Out-of-Order Completion:

Using the same set of instructions, the next diagram illustrates the effect of allowing some instructions to

complete out-of-order. With out-of-order completion, any number of instructions may be in the execution

stage, limited only by the machine's parallelism. Instruction issuing in any one pipeline is stalled by a

resource conflict, data dependency or procedural dependency.

• Note that I2 is allowed to complete before I1. I5 depends on the value produced by I4 and cannot

be issued until cycle 5.

• Out-of-order completion requires more complex instruction-issue logic than in-order completion.

It is more difficult to deal with instruction interrupts and exceptions. When an interrupt occurs,

the processor must take into account that instructions ahead of the instruction that caused the

interrupt may have already completed.

• The time from decoding the first instruction to writing the last is 7 cycles.

3) Out-of-Order Issue with Out-of-Order Completion:

To allow out-of-order issue, it is necessary to decouple the decode and execute stages of the pipeline.

When an instruction has been decoded it is placed in a buffer known as an instruction window. As long

as this buffer is not full, the processor can continue to fetch and decode new instructions. When a

functional unit becomes available an instruction from the window may be issued. Any instruction that

needs the functional unit and which has no conflicts or dependencies to block it may be selected.

• Note that it is possible to issue I6 before I5 as I5 has a dependency on I4.

The time from decoding the first instruction to writing the last is 6 cycles.

The instruction window can be centralised or distributed. A centralised instruction window holds all

instructions irrespective of their type. In the distributed approach, instruction buffers called reservation

stations are placed in front of each functional unit. Decoded instructions are routed to the appropriate

reservation station and subsequently issued to the functional unit when it is free and all operands for the

instruction have been received by the reservation station.

Advantages of Superscalar Architecture :

o In a Superscalar Processor, the detrimental effect on performance of various hazards becomes even

more pronounced.

o The compiler can avoid many hazards through judicious selection and ordering of instructions.

o The compiler should strive to interleave floating point and integer instructions. This would enable

the dispatch unit to keep both the integer and floating point units busy most of the time.

o In general, high performance is achieved if the compiler is able to arrange program instructions to

take maximum advantage of the available hardware units.

Disadvantages of Superscalar Architecture :

o Due to this type of architecture, problem in scheduling can occur.

COMPARISON BETWEEN PIPELINING & SUPERSCALAR

Pipelining Superscalar

divides an instruction into steps, and since each

step is executed in a different part of the processor,

multiple instructions can be in different “phases”

each clock.

involves the processor being able to issue multiple

instructions in a single clock with redundant

facilities to execute an instruction within a single

core

once one instruction was done decoding and went

on towards the next execution subunit

multiple execution subunits able to do the same

thing in parallel

Sequencing unrelated activities such that they use

different components at the same time

Multiple sub-components capable of doing the

same task simultaneously, but with the processor

deciding how to do it.

Superpipelining

An alternative approach to achieving better performance is superpipelining. Superpipelining exploits the

fact that many pipeline stages perform tasks that require less than half a clock cycle. A doubled internal

clock speed allows those stages to perform two tasks during one external clock cycle.

In a superpipelined processor of degree n, the pipeline cycle time is 1/n of the base cycle. Stages that

require the full base cycle to complete can be strung into a series of shorter stages, effectively increasing

the length of the pipeline and matching the execution latency of each stage. An number of instructions

may be in various parts of the execution stage. As a comparison, where an execution operation takes 1

cycle in the base scalar processor, the same operation is implemented as n short cycles in a superpipelined

processor with the same operation technology.

Both the superpipeline and the superscalar implementations have the same number of instructions

executing at the same time in the steady state. The superpipelined processor falls behind the superscalar

processor at the start of the program and after each branch instruction.

The following terms are used for comparison.

• The scalar base machine is a single multi-stage pipeline processor.

• The pipeline cycle for the scalar base machine is assumed to be 1 time unit called the base cycle.

• The instruction issue rate is the number of instructions issued per cycle.

• The instruction issue latency is the time required between the issuing of two adjacent instructions.

• Simple operation latency is the time taken to execute simple operations, such as add, load, store,

branch, move etc. which make up the vast majority of instructions executed by the processor.

• Complex instructions are those requiring an order of magnitude longer latency such as divides,

cache misses.

• The instruction level parallelism is the maximum number of instructions that can be

simultaneously executed in the pipeline.

• In the scalar base machine one instruction is issued per cycle, with one cycle latency for simple

operations and one cycle latency between instructions. The instruction pipeline can be fully

utilised if successive instructions can enter it continuously at the rate of one per cycle.

• In a superpipelined superscalar design of degree (m,n) the machine executes m instructions every

cycle with a pipeline cycle 1/n of the base cycle. Simple operation latency is n pipeline cycles.

The level of parallelism required to fully utilise this machine is mn instructions.

• The superscalar approach depends on the ability to execute multiple instructions in parallel. A

combination of the compiler-based optimisation and various hardware techniques can be used to

maximise instruction level parallelism.

COMPARISON BETWEEN SUPERPIPELINING & SUPERSCALAR

• Super-pipelining attempts to increase performance by reducing the clock cycle time. It achieves

that by making each pipeline stage very shallow, resulting in a large number of pipe stages. A

shorter clock cycle means a faster clock. As long as your cycles per instruction (CPI) doesn’t

change, a faster clock means better performance. Super-pipelining works best with code that

doesn’t branch often, or has easily predicted branches.

• Superscalar attempts to increase performance by executing multiple instructions in parallel. If we

can issue more instructions every cycle, without decreasing clock rate, then CPI decreases,

therefore increasing performance.

• Superscalar breaks into two broad categories: In-order and out-of-order.

o In-order superscalar mainly provides benefit to code with instruction-level parallelism

among a small window of consecutive instructions.

o Out-of-order superscalar allows the pipeline to find parallelism across larger windows of

code, and to hide latencies associated with long-running instructions. (Example: load

instructions that miss the cache.)

NOTE:

o Super-pipelining seeks to improve the sequential instruction rate, while superscalar seeks to

improve the parallel instruction rate.

o Most modern processors are both superscalar and super-pipelined. They have deep pipelines to

achieve high clock rates, and wide instruction issue to make use of instruction level parallelism.

Instruction-level parallelism
• Instruction-level parallelism (ILP) is a measure of how many of the instructions in a computer

program can be executed simultaneously.

• ILP must not be confused with concurrency, since ILP is about parallel execution of a sequence

of instructions belonging to a specific thread of execution of a process (that is a running program

with its set of resources - for example its address space, a set of registers, its identifiers, its state,

program counter, and more). Conversely, concurrency regards with the threads of one or different

processes being assigned to a CPU's core in a strict alternance or in true parallelism if there are

enough CPU's cores, ideally one core for each runnable thread.

There are two approaches to instruction level parallelism: Hardware and Software.

• Hardware level works upon dynamic parallelism, whereas the software level works on static

parallelism. Dynamic parallelism means the processor decides at run time which instructions to

execute in parallel, whereas static parallelism means the compiler decides which instructions to

execute in parallel. The Pentium processor works on the dynamic sequence of parallel execution,

but the Itanium processor works on the static level parallelism.

Consider the following program:

1 e = a + b

2 f = c + d

3 m = e * f

• Operation 3 depends on the results of operations 1 and 2, so it cannot be calculated until both of

them are completed. However, operations 1 and 2 do not depend on any other operation, so they

can be calculated simultaneously. If we assume that each operation can be completed in one unit

of time then these three instructions can be completed in a total of two units of time, giving an ILP

of 3/2(as 1 and 2 can execute concurrently and require 1unit time and instruction 3 require 1unit

time).

• A goal of compiler and processor designers is to identify and take advantage of as much ILP as

possible. Ordinary programs are typically written under a sequential execution model where

instructions execute one after the other and in the order specified by the programmer. ILP allows

the compiler and the processor to overlap the execution of multiple instructions or even to change

the order in which instructions are executed.

Micro-architectural techniques that are used to exploit ILP include:

• Instruction pipelining where the execution of multiple instructions can be partially overlapped.

• Superscalar execution, VLIW, and the closely related explicitly parallel instruction

computing concepts, in which multiple execution units are used to execute multiple instructions

in parallel.

• Out-of-order execution where instructions execute in any order that does not violate data

dependencies. Note that this technique is independent of both pipelining and superscalar

execution. Current implementations of out-of-order execution dynamically (i.e., while the

program is executing and without any help from the compiler) extract ILP from ordinary programs.

An alternative is to extract this parallelism at compile time and somehow convey this information

to the hardware. Due to the complexity of scaling the out-of-order execution technique, the

industry has re-examined instruction sets which explicitly encode multiple independent operations

per instruction.

• Register renaming which refers to a technique used to avoid unnecessary serialization of program

operations imposed by the reuse of registers by those operations, used to enable out-of-order

execution.

• Speculative execution which allows the execution of complete instructions or parts of instructions

before being certain whether this execution should take place. A commonly used form of

speculative execution is control flow speculation where instructions past a control flow instruction

(e.g., a branch) are executed before the target of the control flow instruction is determined. Several

other forms of speculative execution have been proposed and are in use including speculative

execution driven by value prediction, memory dependence prediction and cache latency

prediction.

• Branch prediction which is used to avoid stalling for control dependencies to be resolved. Branch

prediction is used with speculative execution.

Note: It is known that the ILP is exploited by both the compiler and hardware support but the compiler

also provides inherent and implicit ILP in programs to hardware by compilation optimization. Some

optimization techniques for extracting available ILP in programs would include scheduling, register

allocation/renaming, and memory access optimization.

• To obtain substantial performance enhancements, we must exploit ILP across multiple basic

blocks.

• The simplest and most common way to increase the amount of parallelism available among

instructions is to exploit parallelism among iterations of a loop. This type of parallelism is often

called loop-level parallelism.

Example 1

for (i=1; i<=1000; i= i+1)

 x[i] = x[i] + y[i];

• This is a parallel loop. Every iteration of the loop can overlap with any other iteration, although

within each loop iteration there is little opportunity for overlap.

Example 2

for (i=1; i<=100; i= i+1){

 a[i] = a[i] + b[i]; //s1

 b[i+1] = c[i] + d[i]; //s2

}

Statement s1 uses the value assigned in the previous iteration by statement s2, so there is a loop-carried

dependency between s1 and s2.

VLIW Architecture:
• Very Long Instruction Word (VLIW) architecture in P-DSPs (programmable DSP) increases the

number of instructions that are processed per cycle. It is a concatenation of several short

instructions and requires multiple execution units running in parallel, to carry out the instructions

in a single cycle. A language compiler or pre-processor separates program instructions into basic

operations and places them into VLIW processor which then disassembles and transfers each

operation to an appropriate execution unit.

• VLIW P-DSPs have a number of processing units (data paths) i.e. they have a number of ALUs,

MAC units, shifters, etc. The VLIW is accessed from memory and is used to specify the operands

and operations to be performed by each of the data paths.

• As shown in figure, the multiple functional units share a common multi-ported register file for

fetching the operands and storing the results. Parallel random access by the functional units to the

register file is facilitated by the read/write cross bar. Execution of the operations in the functional

units is carried out concurrently with the load/ store operation of data between a RAM and the

register file.

• The performance gains that can be achieved with VLIW architecture depends on the degree of

parallelism in the algorithm selected for a DSP application and the number of functional units. The

throughput will be higher only if the algorithm involves execution of independent operations. For

example, in convolution by using eight functional units, the time required can be reduced by a

factor of 8 compared to the case where a single functional unit is used.

• However, it may not always be possible to have independent stream of data for processing. The

number of functional units is also limited by the hardware cost for the multi-ported register file

and cross bar switch.

Advantages of VLIW architecture

• Increased performance.

• Potentially scalable i.e. more execution units can be added and so more instructions can be packed

into the VLIW instruction.

Disadvantages of VLIW architecture

• New programmer needed.

• Program must keep track of Instruction scheduling.

• Increased memory use.

• High power consumption.

ARM Processor
• The ARM microcontroller stands for Advance Risk Machine; it is one of the extensive and most

licensed processor cores in the world. The first ARM processor was developed in the year 1978

by Cambridge University, and the first ARM RISC processor was produced by the Acorn Group

of Computers in the year 1985. These processors are specifically used in portable devices like

digital cameras, mobile phones, home networking modules and wireless communication

technologies and other embedded systems due to the benefits, such as low power consumption,

reasonable performance, etc.

ARM Architecture

• The ARM architecture processor is an advanced reduced instruction set computing [RISC]

machine and it’s a 32bit reduced instruction set computer (RISC) microcontroller. It was

introduced by the Acron computer organization in 1987. This ARM is a family of microcontroller

developed by makers like ST Microelectronics, Motorola, and so on. The ARM architecture comes

with totally different versions like ARMv1, ARMv2, etc.

ARM Cortex:

• The ARM cortex is a complicated microcontroller within the ARM family that has ARMv7 design.

There are 3 subfamilies within the ARM cortex family:

▪ ARM Cortex Ax-series

▪ ARM-Cortex Rx-series

▪ ARM-Cortex Mx-series

ARM Block Diagram

• The ARM processor conjointly has other components like the Program status register, which

contains the processor flags (Z, S, V and C). The modes bits conjointly exist within the program

standing register, in addition to the interrupt and quick interrupt disable bits;

• Some special registers: Some registers are used like the instruction; memory data read and write

registers and memory address register.

• Priority encoder: The encoder is used in the multiple load and store instruction to point which

register within the register file to be loaded or kept.

• Multiplexers: several multiplexers are accustomed to the management operation of the processor

buses. Because of the restricted project time, we tend to implement these components in a very

behavioural model. Each component is described with an entity. Every entity has its own

architecture, which can be optimized for certain necessities depending on its application. This

creates the design easier to construct and maintain.

The ARM Architecture:

The ARM processor consists of:

▪ Arithmetic Logic Unit

▪ Booth multiplier

▪ Barrel shifter

▪ Control unit

▪ Register file

Arithmetic Logic Unit (ALU)

• The ALU has two 32-bits inputs. The primary comes from the register file, whereas the other

comes from the shifter. Status registers flags modified by the ALU outputs. The V-bit output goes

to the V flag as well as the Count goes to the C flag. Whereas the foremost significant bit really

represents the S flag, the ALU output operation is done by NORed to get the Z flag. The ALU has

a 4-bit function bus that permits up to 16 opcodes to be implemented.

Booth Multiplier Factor

• The multiplier factor has 3 32-bit inputs and the inputs return from the register file. The multiplier

output is barely 32-Least Significant Bits of the merchandise. The multiplication starts whenever

the beginning 04 input goes active. Fin of the output goes high when finishing.

Booth Algorithm

• Booth algorithm is a noteworthy multiplication algorithmic rule for 2’s complement numbers. This

treats positive and negative numbers uniformly. Moreover, the runs of 0’s or 1’s within the

multiplier factor are skipped over without any addition or subtraction being performed, thereby

creating possible quicker multiplication. The figure shows the simulation results for the

multiplier test bench. It’s clear that the multiplication finishes only in16 clock cycle.

Barrel Shifter

• The barrel shifter features a 32-bit input to be shifted. This input is coming back from the register

file or it might be immediate data. The shifter has different control inputs coming back from the

instruction register. The Shift field within the instruction controls the operation of the barrel

shifter. This field indicates the kind of shift to be performed (logical left or right, arithmetic right

or rotate right). The quantity by which the register ought to be shifted is contained in an immediate

field within the instruction or it might be the lower 6 bits of a register within the register file.

• The shift_val input bus is 6-bits, permitting up to 32-bit shift. The shift type indicates the needed

shift sort of 00, 01, 10, 11 are corresponding to shift left, shift right, an arithmetic shift right and

rotate right, respectively. The barrel shifter is especially created with multiplexers.

Control Unit

• For any microprocessor, control unit is the heart of the whole process and it is responsible for the

system operation, so the control unit design is the most important part within the whole design.

The control unit is sometimes a pure combinational circuit design. Here, the control unit is

implemented by easy state machine. The processor timing is additionally included within the

control unit. Signals from the control unit are connected to each component within the processor

to supervise its operation.

ARM7 Functional Diagram

The final thing that must be explained is how the ARM will be used and the way in which the chip appear.

The various signals that interface with the processor are input, output or supervisory signals which will

be used to control the ARM operation.

ARM Functional Diagram

Additional Uses of the Cortex Processor

• It is a reduced instruction set computing Controller having 32-bit high performance central

processing unit and 3-stage pipeline and compact one.

• It has THUMB-2 technology

• Merges optimally with 16/32-bit instructions

• High performance

• It supports tools and RTOS and its core Sight debug and trace

• Support for multiple processors

• Low power Modes

• It supports sleep modes

• Control the software package

• Multiple power domains

• Nested vectored interrupt controller (NVIC)

• Low latency, low noise interrupts response

• No need for assembly programming

SPARC processor
Introduction:

• SPARC stands for Scalable Processor Architecture.

• It is developed by Sun Microsystems in the 1980s.

• It is based on the RISC structure designed at the University of California at Berkeley in early

1980s.

• The SPARC architecture is a non-proprietary architecture that any person or company can

license and use to develop microprocessors and other semiconductor devices based on published

industry standards.

• In 1989, Sun Microsystems transferred ownership of the SPARC specifications to an independent,

non-profit organization, SPARC International, which administers and licenses the technology and

provides conformance testing and other services for its members.

Design Goals

• SPARC was designed as a target for optimizing compilers and easily pipelined hardware

implementations.

• SPARC implementations provide exceptionally high execution rates(MIPS) and short time-to-

market development schedules.

• It provide the scalability of the cost/performance ratio of successive implementations with the

current improvements in circuit technology.

• The "Scalable" in SPARC comes from the fact that the SPARC specification allows

implementations to scale from processors required in embedded systems to processors used for

servers.

Brief History: 3 major revisions to the SPARC architecture

• SPARC-V7, 32bit, 1986

• SPARC-V8, 32bit, 1990

• SPARC-V9, 64bit, 1993

• In early 2006, Sun released an extended architecture specification, UltraSPARC Architecture

2005.

The SPARC Architecture

• It is a Load and store architecture. Operations are always done over registers.

• Uses “register window” concept thus offering a large number of registers.

• Uses delay slot to optimize branch instruction.

• Passes arguments using registers and the stack.

The Modules:

1) The Integer Unit (IU)

• Contains the general-purpose registers and controls the overall operation of the processor.

• It may contain from 64 to 528 general-purpose 64-bit r registers. They are partitioned into 8 global

registers, 8 alternate global registers, plus a circular stack of from 3 to 32 sets of 16 registers each,

known as register windows.

• Executes the integer arithmetic instructions and computes memory addresses for loads and stores.

• Maintains the program counters and controls instruction execution for the FPU.

2) The Register Window

• At any time, an instruction can access the 8 global registers and a 24-register window

• A register window comprises a 16-register set- divided into 8 in and 8 local registers- together

with the 8 in registers of an adjacent register set, addressable from the current window as its out

registers.

• When a procedure is called, the register window shifts by sixteen registers, hiding the old input

registers and old local registers and making the old output registers the new input registers.

o Input registers: arguments are passed to a function

o Local registers: to store any local data.

o Output registers: When calling a function, the programmer puts his argument in these

registers.

• The current window into the r registers is given by the current window pointer (CWP) register.

3) The Floating-point Unit (FPU)

• The FPU has 32 32-bit (single-precision) floating-point registers, 32 64-bit (double-precision)

floating-point registers, and 16 128-bit (quad-precision) floating-point registers.

• Double-precision values occupy an even-odd pair of single-precision registers.

• Quad-precision values occupy an odd-even number of pair of double precision registers.

• Floating-point load/store instructions are used to move data between the FPU and memory.

• The memory address is calculated by the IU.

• Floating-Point operate (FPop) instructions perform the floating-point arithmetic operations and

comparisons.

4) Coprocessor Unit (CU)

• The instruction set includes support for a single, implementation-dependent coprocessor. The

coprocessor has its own set of registers.

• Coprocessor load/store instructions are used to move data between the coprocessor registers and

memory.

5) Instructions

Instructions can fall into following basic categories:

• Load/store

• Arithmetic/logical/shift

• Control transfer

• Read/write control register

• Floating-point/Coprocessor operate

SPARC v9 features

• 64-bit Data and Addresses as compared to 32-bit Data and Addresses of SPARC V8.

• 32 double-precision floating-point registers,

• Software-settable branch prediction

• 64-bit integer multiply and divide instructions

• load/store floating-point quad word instructions

• Branches on register value (eliminating the need to compare)

• The V9 remains binary compatible with all previous SPARC architecture.

Department of Computer Science and Engineering

Subject Name: Advanced Computer Architecture

UNIT-II
Flynn's Classification

Flynn’s classification distinguishes multi-processor computer architectures according to two

independent dimensions of Instruction stream and Data stream. An instruction stream is

sequence of instructions executed by machine. And a data stream is a sequence of data including

input, partial or temporary results used by instruction stream. Each of these dimensions can

have only one of two possible states: Single or Multiple. Flynn’s classification depends on the

distinction between the performance of control unit and the data processing unit rather than

its’ operational and structural interconnections.

Following are the four category of Flynn classification and characteristic feature of each of them.

1. Single Instruction Stream, Single Data Stream (SISD)

The following figure represents an organization of simple SISD computer having one control unit,

one processor unit and single memory unit.

SISD processor organizations

• They are also called scalar processor i.e., one instruction at a time and each instruction

have only one set of operands.

• Single instruction: only one instruction stream is being acted on by the CPU during any

one clock cycle.

Characteristics:

• Single data: only one data stream is being used as input during any one clock cycle.

• Deterministic execution.

• Instructions are executed sequentially.

• This is the oldest and until recently, the most prevalent form of computer.

Example: most PCs, single CPU workstations and mainframes.

2. Single Instruction Stream, Multiple Data Stream (SIMD) processors

• This is a type of parallel computer.

• Single instruction: All processing units execute the same instruction issued by the control

unit at any given clock cycle as shown in figure where there are multiple processors

executing instruct ion given by one control unit.

• Multiple data: Each processing unit can operate on a different data element a s shown if

figure below the processor are connected to shared memory or interconnection network

providing multiple data to processing unit.

• This type of machine typically has an instruct ion dispatcher, a very high- bandwidth

internal network, and a very large array of very small-capacity instruction units. Thus, single

instruction is executed by different processing unit on different set of data.

• Best suited for specialized problems characterized by a high degree of regularity, such as

image processing and vector computation.

• Synchronous (lockstep) and deterministic execution.

SIMD processor organizations

3. Multiple Instruction Stream, Single Data Stream (MISD)

• Here, a single data stream is feed into multiple processing units.

• Each processing unit operates on the data independently through independent instruction

streams as shown in following figure a single data stream is forwarded to different

processing unit which are connected to different control unit and execute instruction

given to it by control unit to which it is attached.

Figure: MISD processor organizations

• Thus, in these computers same data flow through a linear array of processors executing

different instruction st reams.

• This architecture is also known as systolic arrays for pipelined execution of specific

instructions.

4. Multiple Instruction Stream, Multiple Data Stream (MIM D)

• Multiple Instructions: Every Processor may be executing a different instruction stream.

• Multiple Data: every processor may be working with a different data stream as shown in

the figure multiple data stream is provided by shared memory.

• Can be categorized as loosely coupled or tightly coupled depending on sharing of data and

control.

• Execution can be synchronous or asynchronous, deterministic or non- deterministic.

• Examples: most current supercomputers, networked parallel computer " grids" and multi-

processor SMP computers - including some types of PCs.

MIMD processor organizations System

Parallel Computer Models

Multiprocessor and Multicomputer
1. Multiprocessor:

• A Multiprocessor is a computer system with two or more central processing units (CPUs) share

full access to a common RAM. The main objective of using a multiprocessor is to boost the

system’s execution speed, with other objectives being fault tolerance and application matching.

• There are two types of multiprocessors, one is called shared memory multiprocessor and another

is distributed memory multiprocessor. In shared memory multiprocessors, all the CPUs shares the

common memory but in a distributed memory multiprocessor, every CPU has its own private

memory.

Applications of Multiprocessor –

• As a uniprocessor, such as single instruction, single data stream (SISD).

• As a multiprocessor, such as single instruction, multiple data stream (SIMD), which is usually

used for vector processing.

• Multiple series of instructions in a single perspective, such as multiple instruction, single data

stream (MISD), which is used for describing hyper-threading or pipelined processors.

• Inside a single system for executing multiple, individual series of instructions in multiple

perspectives, such as multiple instruction, multiple data stream (MIMD).

Benefits of using a Multiprocessor –

• Enhanced performance.

• Multiple applications.

• Multi-tasking inside an application.

• High throughput and responsiveness.

• Hardware sharing among CPUs.

2. Multicomputer:

• A multicomputer system is a computer system with multiple processors that are connected

together to solve a problem. Each processor has its own memory and it is accessible by that

particular processor and those processors can communicate with each other via an interconnection

network.

• As the multicomputer is capable of messages passing between the processors, it is possible to

divide the task between the processors to complete the task. Hence, a multicomputer can be used

for distributed computing. It is cost effective and easier to build a multicomputer than a

multiprocessor.

Architecture of multicomputer

Difference between multiprocessor and Multicomputer:

• Multiprocessor is a system with two or more central processing units (CPUs) that is capable of

performing multiple tasks where as a multicomputer is a system with multiple processors that are

attached via an interconnection network to perform a computation task.

• A multiprocessor system is a single computer that operates with multiple CPUs where as a

multicomputer system is a cluster of computers that operate as a singular computer.

• Construction of multicomputer is easier and cost effective than a multiprocessor.

• In multiprocessor system, program tends to be easier where as in multicomputer system, program

tends to be more difficult.

• Multiprocessor supports parallel computing, whereas, Multicomputer supports distributed

computing.

Different categories of multiprocessor:

1. Shared Memory Multiprocessor

• Shared memory parallel computers vary widely, but generally have in common the

ability for all processors to access all memory as global address space.

• Multiple processors can operate independently but share the same memo r y resources.

• Changes in a memory location effected by one processor are visible to all other

processors.

• Shared memory machines can be divided into three categories based upon memory

access times: UMA, NUMA and COM A.

a. Uniform Memory Access (UMA):

• Most commonly represented today by Symmetric Multiprocessor (SMP) machines.

• Identical processors.

• Equal access and access times to memory.

• Sometimes called CC-UMA - Cache Coherent UMA.

• Cache coherent means if one processor updates a location in shared memory, all the other

processors know about the update. Cache coherency is accomplished at the hardware

level.

Shared Memory (UMA)

b. Non-Uniform Memory Access (NUMA):

• Often made by physically linking two or more SMPs

• One SMP can directly access memory of another SMP

• Not all processors have equal access time to all memories

• Memory access across link is slower.

• If cache coherency is maintained, then may also be called CC-NUMA - Cache Coherent

NUMA

Shared Memory (NUMA)

c. The COMA model (Cache only Memory Access):

• The COMA model is a special case of NUMA machine in which the distributed main

memories are converted to caches. All caches form a global address space and there is no

memory hierarchy at each processor node.

Advantages:

• Global address space provides a user-friendly programming perspective to memory

• Data sharing between tasks is both fast and uniform due to the proximity of memory to

CPUs

Disadvantages:

• Primary disadvantage is the lack of scalability between memory and CPUs. Adding more

CPUs can geometrically increase traffic on the shared memory-CPU path, and for cache

coherent systems, geometrically increase traffic associated with cache/memory

management.

• Programmer responsibility for synchronization constructs that insure " correct" access of

global memory.

• Expense: it becomes increasingly difficult and expensive to design and produce shared

memory machines with ever increasing numbers of processors.

Distributed Memory
• Like shared memory systems, distributed memory systems vary widely but share a

common characteristic. Distributed memory systems require a communication network

to connect inter- processor memory.

Figure: Distributed Memory Systems

• Processors have their own local memory. Memory addresses in one processor do not map

to another processor, so there is no concept of global address space across all processors.

• Because each processor has its own local memory, it operates independently.

• Changes it makes to its local memory have no effect on the memory of other processors.

Hence, the concept of cache coherency does not apply.

• When a processor needs access to data in another processor, it is usually the task of the

programmer to explicitly define how and when data is communicated. Synchronization

between tasks is likewise the programmer's responsibility.

• Modern multicomputer use hardware routers to pass message.

Advantages:

• Memory is scalable with number of processors. Increase the number of processors and

the size of memory increases proportionately.

• Each processor can rapidly access its own memory without interference and without the

overhead incurred with trying to maintain cache coherency.

• Cost effectiveness: can use commodity, off-the-shelf processors and networking.

Disadvantages:

• The programmer is responsible for many of the details associated with data

communication between processors.

• It may be difficult to map existing data structures, based on global memory, to this

memory organization.

Multi-vector and SIMD Computers:

• A vector operand contains an ordered set of n elements, where n is called the length of the

vector. Each element in a vector is a scalar quantity, which may be a floating-point number,

an integer, a logical value or a character.

• A vector processor consists of a scalar processor and a vector unit, which could be thought of

as an independent functional unit capable of efficient vector operations.

Types of Array Processor

Array Processor performs computations on large array of data. These are two types of Array Processors:

Attached Array Processor, and SIMD Array Processor. These are explained as following below.

1. Attached Array Processor:

To improve the performance of the host computer in numerical computational tasks auxiliary processor

is attached to it.

Attached array processor has two interfaces:

1. Input output interface to a common processor.

2. Interface with a local memory.

• Here local memory interconnects main memory. Host computer is general purpose computer.

Attached processor is back end machine driven by the host computer.

• The array processor is connected through an I/O controller to the computer & the computer treats

it as an external interface.

2. SIMD array processor:

This is computer with multiple process unit operating in parallel Both types of array processors,

manipulate vectors but their internal organization is different.

• SIMD is a computer with multiple processing units operating in parallel.

• The processing units are synchronized to perform the same operation under the control of a

common control unit. Thus, providing a single instruction stream, multiple data stream (SIMD)

organization. As shown in figure, SIMD contains a set of identical processing elements (PES) each

having a local memory M.

Each PE includes –

▪ ALU

▪ Floating point arithmetic unit

▪ Working registers

Master control unit controls the operation in the PEs. The function of master control unit is to decode the

instruction and determine how the instruction to be executed. If the instruction is scalar or program control

instruction then it is directly executed within the master control unit.

Main memory is used for storage of the program while each PE uses operands stored in its local memory.

The classical structure of a SIMD array architecture is conceptually simple. In such architectures a

program consists of a mixture of scalar and array instructions. The scalar instructions are sent to the scalar

processor and the array instructions are broadcast to all array elements in parallel. Array elements are

incapable of operating autonomously, and must be driven by the control unit.

There are two important control mechanisms: a local control mechanism by which array elements use

local state information to determine whether they should execute a broadcast instruction or ignore it, and

a global control mechanism by which the control unit extracts global information from the array elements

to determine the outcome of a conditional control transfer within the user's program. Global information

can be extracted in one of two ways. Either the control unit reads state information from one, or a group,

of array elements, or it senses a Boolean control line representing the logical OR (or possibly the logical

AND) of a particular local state variable from every array element.

The three major components of an array structure are the array units, the memory they access, and the

connections between the two.

▪ If all memory is shared then the switch network connecting the array units to the memory must be

capable of sustaining a high rate of data transfer, since every instruction will require massive

movement of data between these two components.

▪ Alternatively, if the memory is distributed then the majority of operands will hopefully reside

within the local memory of each processing element (where processing element = arithmetic unit

+ memory module), and a much lower performance from the switch network can be tolerated. The

design of the switch network is of central importance, a topic is covered in the section

on Networks.

Figure 1. Classical SIMD Array Architecture

Figure 2. Array Processor with Shared Memory

Figure 3. Array Processor with Distributed Memory

Examples of these two styles of array processor architecture were the highly influential ILLIAC IV

machine, which had a fully distributed memory, and the ill-fated Burroughs Scientific Processor (BSP),

which had a shared memory.

ILLIAC IV

▪ The ILLIAC IV system was the first real attempt to construct a large-scale parallel machine, and

in its time it was the most powerful computing machine in the world. It was designed and

constructed by academics and scientists from the University of Illinois and the Burroughs

Corporation. A significant amount of software, including sophisticated compilers, was developed

for ILLIAC IV, and many researchers were able to develop parallel application software.

▪ ILLIAC IV grew from a series of ILLIAC machines. Work on ILLIAC IV began in the 1960s, and

the machine became operational in 1972. The original aim was to produce a 1 GFLOP machine

using an SIMD array architecture comprising 256 processors partitioned into four quadrants, each

controlled by an independent control unit. Unfortunately, as is often the case with such ambitious

projects, escalating costs and unforeseen engineering problems resulted in just a single quadrant

being built. The clock speed of the machine was intended to be 25 MHz but this too had to be

reduced to 10 MHz, due partly to signal transmission delays resulting from the machine's large

physical dimensions.

▪ The processors in each quadrant were connected in the topology shown in the figure. Although

this looks superficially rather like a square grid of connections it is in fact known as a chordal

ring (see under Interconnection Networks/Static Networks), due to the shifted wrap-around of the

boundary connections. Each inter-processor link consisted of a bi-directional 64-bit wide channel.

▪ The control unit of ILLIAC IV was responsible for performing scalar operations and issuing SIMD

instructions to an array of 64 processing elements. These elements executed instructions in

lockstep, although each processing element had the ability to execute instructions conditionally

using local condition variables. This mechanism whereby processing elements selectively "sit out"

instructions makes the machine particularly flexible, and is a feature that has been included in all

subsequent SIMD machines. It can even be seen in some vector machines in the form of control

vectors.

▪ Instructions for both the scalar section and the ILLIAC IV array were stored in the 2048 x 64-bit

local memories associated with each processing element. These memories were constructed using

thin-film storage devices and had access and cycle times of 120 and 240ns respectively. The

control unit (CU) interface to these memories was a further example of array parallelism in

operation; the data pathway between the CU and the memories was 512 bits wide permitting the

CU to access one 64-bit word from each memory module in one row of processing elements

concurrently (and at a common address), thus achieving an effective peak memory bandwidth of

1 word every 30 ns.

▪ Although the actual performance of ILLIAC IV on real applications was only 2 to 4 times that of

a CDC 7600, the machine is of significant historical value since it is arguably the origin of all

subsequent parallel machines.

ILLIAC-IV processor interconnection topology

Vector Supercomputer

• Vector computers have hardware to perform the vector operations efficiently. Operands

cannot be used directly from memory but rather are loaded int o registers and are put back in

registers after the operation. Vector hardware has the special ability to overlap or pipeline

operand processing. Vector functional unit s pipelined, fully segmented each stage of the

pipeline performs a step of the function on different operand(s) once pipeline is full; a new

result is produced each clock period (cp).

Figure: Architecture of Vector Supercomputer

Vector processor classification

According to from where the operands are retrieved in a vector processor, pipe lined vector computers are

classified into two architectural configurations:

1. Memory to memory architecture:

In memory to memory architecture, source operands, intermediate and final results are retrieved

(read) directly from the main memory. For memory to memory vector instructions, the information

of the base address, the offset, the increment, and the vector length must be specified in order to

enable streams of data transfers between the main memory and pipelines. The processors like TI-

ASC, CDC STAR-100, and Cyber-205 have vector instructions in memory to memory formats. The

main points about memory to memory architecture are:

• There is no limitation of size

• Speed is comparatively slow in this architecture

2. Register to register architecture:

In register to register architecture, operands and results are retrieved indirectly from the main

memory through the use of large number of vector registers or scalar registers. The processors

like Cray-1 and the Fujitsu VP-200 use vector instructions in register to register formats. The main

points about register to register architecture are:

• Register to register architecture has limited size.

• Speed is very high as compared to the memory to memory architecture.

• The hardware cost is high in this architecture.

A block diagram of a modern multiple pipeline vector computer is shown below:

A typical pipe lined vector processor.

VECTOR PROCESSING:

▪ Vector processing performs the arithmetic operation on the large array of integers or floating-

point number. Vector processing operates on all the elements of the array in parallel providing

each pass is independent of the other.

▪ Vector processing avoids the overhead of the loop control mechanism that occurs in general-

purpose computers.

▪ We need computers that can solve mathematical problems for us which include, arithmetic

operations on the large arrays of integers or floating-point numbers quickly. The general-purpose

computer would use loops to operate on an array of integers or floating-point numbers. But, for

large array using loop would cause overhead to the processor.

▪ To avoid the overhead of processing loops and fasten the computation, some kind of parallelism

must be introduced. Vector processing operates on the entire array in just one operation i.e. it

operates on elements of the array in parallel. But vector processing is possible only if the

operations performed in parallel are independent.

▪ Look at the figure below. Below, instructions in both the blocks are set to add two arrays and store

the result in the third array. Vector processing adds both the array in parallel by avoiding the use

of the loop.

▪ Operating on multiple data in just one instruction is also called Single Instruction Multiple

Data (SIMD) or they are also termed as Vector instructions. Now, the data for vector instruction

are stored in vector registers.

▪ Each vector register is capable of storing several data elements at a time. These several data

elements in a vector register is termed as a vector operand. So, if there are n number of elements

in a vector operand then n is the length of the vector.

▪ Supercomputers were evolved to deal with billions of floating-point operations/second.

Supercomputer optimizes numerical computations (vector computations).

▪ But, along with vector processing supercomputers are also capable of doing scalar processing.

Later, Array processor was introduced which particularly deals with vector processing, they do

not indulge in scalar processing.

Characteristics of Vector Processing

▪ Each element of the vector operand is a scalar quantity which can either be an integer, floating-

point number, logical value or a character. Below we have classified the vector instructions in four

types.

▪ Here, V is representing the vector operands and S represents the scalar operands. In the figure

below, O1 and O2 are the unary operations and O3 and O4 are the binary operations.

▪ Most of the vector instructions are pipelined as vector instruction performs the same operation on

the different data sets repeatedly. Now, the pipelining has start-up delay, so longer vectors would

perform better here.

▪ The pipelined vector processors can be classified into two types based on from where the operand

is being fetched for vector processing. The two architectural classifications are Memory-to-

Memory and Register-to-Register.

i. In Memory-to-Memory vector processor the operands for instruction, the intermediate result

and the final result all these are retrieved from the main memory. TI-ASC, CDC STAR-100,

and Cyber-205 use memory-to-memory format for vector instructions.

ii. In Register-to-Register vector processor the source operands for instruction, the intermediate

result, and the final result all are retrieved from vector or scalar registers. Cray-1 and Fujitsu

VP-200 use register-to-register format for vector instructions.

Vector Instruction: A vector instruction has the following fields:

1. Operation Code: Operation code indicates the operation that has to be performed in the given

instruction. It decides the functional unit for the specified operation or reconfigures the multifunction

unit.

2. Base Address: Base address field refers to the memory location from where the operands are to be

fetched or to where the result has to be stored. The base address is found in the memory reference

instructions. In the vector instruction, the operand and the result both are stored in the vector registers.

Here, the base address refers to the designated vector register.

3. Address Increment: A vector operand has several data elements and address increment specifies

the address of the next element in the operand. Some computer stores the data element consecutively

in main memory for which the increment is always 1. But, some computers that do not store the data

elements consecutively requires the variable address increment.

4. Address Offset: Address Offset is always specified related to the base address. The

effective memory address is calculated using the address offset.

5. Vector Length: Vector length specifies the number of elements in a vector operand. It identifies

the termination of a vector instruction.

Improving Performance

▪ In vector processing, we come across two overheads setup time and flushing time. When the vector

processing is pipelined, the time required to route the vector operands to the functional unit is

called Set up time. Flushing time is a time duration that a vector instruction takes right from

its decoding until its first result is out from the pipeline.

▪ The vector length also affects the efficiency of processing as the longer vector length would cause

overhead of subdividing the long vector for processing.

▪ For obtaining the better performance the optimized object code must be produced in order to utilize

pipeline resources to its maximum.

1. Improving the vector instruction: We can improve the vector instruction by reducing the memory

access, and maximize resource utilization.

2. Integrate the scalar instruction: The scalar instruction of the same type must be integrated as a batch.

As it will reduce the overhead of reconfiguring the pipeline again and again.

3. Algorithm: Choose the algorithm that would work faster for vector pipelined processing.

4. Vectorizing Compiler: A vectorizing compiler must regenerate the parallelism by using the higher-

level programming language. In advance programming, the four-stage are identified in the development

of the parallelism. Those are:

▪ Parallel Algorithm(A)

▪ High-level Language(L)

▪ Efficient object code(O)

▪ Target machine code (M)

You can see a parameter in the parenthesis at each stage which denotes the degree of parallelism. In the

ideal situation, the parameters are expected in the order A≥L≥O≥M.

Key Notes:

▪ Computers having vector instruction are vector processors.

▪ Vector processor have the vector instructions which operates on the large array of integer or

floating-point numbers or logical values or characters, all elements in parallel. It is

called vectorization.

▪ Vectorization is possible only if the operation performed in parallel are independent of each other.

▪ Operands of vector instruction are stored in the vector register. A vector register stores several

data elements at a time which is called vector operand.

▪ A vector operand has several scalar data elements.

▪ A vector instruction needs to perform the same operation on the different data set. Hence, vector

processors have a pipelined structure.

▪ Vector processing ignores the overhead caused due to the loops while operating on an array.

▪ So, this is how vector processing allows parallel operation on the large arrays and fasten the

processing speed.

Module-3

Interconnection network

System interconnect architecture
• Various types of interconnection networks have been suggested for SIMD computers.

These are basically classified have been classified on network topologies into two

categories namely

i. Static Networks

ii. Dynamic Networks

• The topological structure of SIMD array processor is mainly characterized by the data

routing network used in the interconnecting the processing elements.

Network properties and routing

• The goals of an interconnection network are to provide low-latency high data transfer rate

wide communication bandwidth.

• Analysis includes latency, bisection bandwidth, data-routing functions and scalability of

parallel architecture.

• These Network usually represented by a graph with a finite number of nodes linked by

directed or undirected edges.

o Number of nodes in graph = network size.

o Number of edges (links or channels) incident on a node = node degree d (also note

in and out degrees when edges are directed).

o Node degree reflects number of I/ O ports associated with a node, and should ideally

be small and constant.

• Network is symmetric if the topology is the same looking from any node; these are easier

to implement or to program.

Other Characteristics are:

i. Diameter: The maximum distance between any two processors in the network or in other

words it is the maximum number of (routing) processors through which a message must pass

on its way from source to reach destination. Thus, diameter measures the maximum delay

for transmitting a message from one processor to another as it determines communication

time hence, smaller the diameter better will be the network topology.

ii. Connectivity: It states how many paths are possible between any two processors i.e., the

multiplicity of paths between two processors. Higher connectivity is desirable as it minimizes

contention.

• Arc connectivity of the network: The minimum number of arcs that must be removed

for the network to break it into two disconnected networks. The arc connectivity of

various network are as follows:

o 1 for linear arrays and binary t rees

o 2 for rings and 2-d meshes

o 4 for 2-d torus

o d for d-dimensional hypercubes

o Larger the arc connectivity lesser the conjunctions and better will be network

topology.

• Channel width: The channel width is the number of bits that can communicated

simultaneously by a interconnection bus connecting two processors.

iii. Bisection Width and Bandwidth:

• To divide the network into equal halves it is required to remove some communication

links. The minimum numbers of such communication links that have to be removed

are called the Bisection Width.

• Bisection width basically provide the information about the largest number of

messages which can be sent simultaneously (without needing to use the same wire or

routing processor at the same time and so delaying one another), no matter which

processors are sending to which other processors. Thus, larger the bisection width is

the better the network topology is considered.

• Bisection Bandwidth is the minimum volume of communication allowed between

two halves of the network with equal numbers of processors. This is important for

the networks with weighted arcs where the weights correspond to the link width i.e.,

(how much data it can transfer).

• Cost the cost of networking can be estimated on variety of criteria where we consider the

number of communication links or wires used to design the network as the basis of cost

estimation, smaller the better the cost.

iv. Data Routing Functions: A data routing network is used for inter-PE (Processing Element)

data exchange. It can be static as in case of hypercube routing network or dynamic such as

multistage network. Various type of data routing functions are: Shifting, Rotating, Permutation

(one to one), Broadcast (one to all), Multicast (many to many), Personalized broadcast (one to

many), Shuffle, Exchange etc.

Factors Affecting Performance

• Functionality: It describes, how the network supports data routing, interrupt handling,

synchronization, request/ message combining, and coherence.

• Network latency: It represents worst-case time for a unit message to be transferred.

• Bandwidth: It is the maximum data rate.

• Hardware complexity: It is determined as implementation costs for wire, logic, switches,

connectors, etc.

• Scalability: It states that how easily does the scheme adapt to an increasing number of

processors, memories, etc.

Static interconnection networks

• Static interconnection networks for elements of parallel systems (ex: processor, memories)

are based on fixed connections that cannot be modified without a physical re-designing of

a system.

• Static interconnection networks can have many structures such as a linear structure

(pipeline), a matrix, a ring, a torus, a complete connection structure, a tree, a star, a hyper-

cube.

• In linear and matrix structures, processors are interconnected with their neighbors in a

regular structure on a plane. A torus is a matrix structure in which elements at the matrix

borders are connected in the frame of the same lines and columns. In a complete connection

structure, all elements (ex. processors) are directly interconnected (point-to-point)

Figure: Linear structure (pipeline) of interconnections in a parallel system

• In a tree structure, system elements are set in a hierarchical structure from the root to

the leaves, as shown in the figure below. All elements of the tree (nodes) can be

processors or only leaves are processors and the rest of nodes are linking elements,

which intermediate in transmissions. If from one node, 2 or more connections go to

different nodes towards the leaves - we say about a binary or k-nary tree. If from one

node, more than one connection goes to the neighboring node, we speak about a fat

tree. A binary tree, in which in the direction of the root, the number of connections

between neighboring nodes increases twice, provides a uniform transmission

throughput between the tree levels, a feature not available in a standard tree.

• In a hypercube structure, processors are interconnected in a network, in which connections

between processors correspond to edges of an n-dimensional cube. The hypercube

structure is very advantageous since it provides a low network diameter equal to the degree

of the cube. The network diameter is the number of edges between the most distant nodes.

The network diameter determines the number in intermediate transfers that have to be done

to send data between the most distant nodes of a network. In this respect the hypercubes

have very good properties, especially for a very large number of constituent nodes. Due to

this, hypercubes are popular networks in existing parallel systems.

Hypercube Interconnection Network

Dynamic interconnection networks

• Dynamic interconnection networks between processors enable changing

(reconfiguring) of the connection structure in a system. It can be done before or during

parallel program execution. So, we can speak about static or dynamic connection

reconfiguration.

• The dynamic networks are those networks where the route through which data move

from one PE to another is established at the time communication has to be performed.

Usually all processing elements are equidistant and an interconnect ion path is

established when two processing elements want to communicate by use of switches.

Such systems are more difficult to expand as compared to static network. Examples:

Bus-based, Crossbar, Multistage Networks. Here the Routing is done by comparing the

bit-level representation of source and destination addresses. If there is a match goes to

next stage via pass-through else in case of it mismatch goes via cross-over using the

switch.

• There are two classes of dynamic networks namely

▪ single stage network

▪ multi stage

i. Single Stage Networks

• A single stage switching network with N input selectors (IS) and N output selectors (OS).

• Here at each network stage there is a 1- to-D demultiplexer corresponding to each IS such

that 1<D<N and each OS is an M -to-1 multiplexer such that 1<M <=N.

• Cross bar network is a single stage network with D=M =N. In order to establish a desired

connecting path different path control signals will be applied to all IS and OS selectors.

• The single stage network is also called as re-circulating network as in this network

connection the single data items may have to re-circulate several times through the single

stage before reaching their final destinations. The number of recirculation depends on the

connectivity in the single stage network.

• In general, higher the hardware connectivity the lesser is the number of recirculation. In

cross bar network only one circulation is needed to establish the connection path. The cost

of completed connected cross bar network is O(N2) which is very high as compared to

other most re-circulating networks which have cost O (N log N) or lower hence are more

cost effective for large value of N.

ii. Multistage Networks

• Many stages of interconnected switches form a multistage SIMD network. It basically

consists of three characteristic features

▪ The switch box,

▪ The network topology

▪ The control structures

• Many stages of interconnected switches form a multistage SIMD network. Each box is

essentially an interchange device with two inputs and two outputs. The four possible

states of a switch box are straight, exchange, Upper Broadcast and Lower broadcast

which are shown in figure.

A two-by-two switching box and its four interconnection states

• A two-function switch can assume only two possible state namely state or exchange

states. However, a four-function switch box can be any of four possible states.

• A multistage network is capable of connecting any input terminal to any output

terminal. Multi-stage networks are basically constructed by so called shuffle-exchange

switching element, which is basically a 2 x 2 crossbar. Multiple layers of these

elements are connected and form the network.

• A multistage network is capable of connecting an arbitrary input terminal to an

arbitrary output terminal.

• Generally, it consists of n stages where N = 2
n

is the number of input and output lines

and each stage use N/2 switch boxes. The interconnection patterns from one stage to

another stage are determined by network topology. Each stage is connected to the next

stage by at least N paths. The total wait time is proportional to the number stages i.e.,

n and the total cost depend on the tot al number of switches used and that are Nlog2N.

• The control structure can be individual stage control i.e., the same control signal is

used to set all switch boxes in the same stages thus we need n control signal. The second

control structure is individual box control where a separate control signal is used to

set the state of each switch box. This provide flexibility at the same time require n2/2

control signal which increases the complexity of the control circuit. In between path

is use of partial stage control.

i. Bus networks

• A bus is the simplest type of dynamic interconnection networks. It constitutes a common

data transfer path for many devices. Depending on the type of implemented transmissions

we have serial busses and parallel busses. The devices connected to a bus can be

processors, memories, I/ O units, as shown in the figure below.

• Only one device connected to a bus can transmits data. M any devices can receive data. In

the last case we speak about a multicast transmission. If data are meant for all devices

connected to a bus means a broadcast transmission. Accessing the bus must be

synchronized. It is done with the use of two methods: a token method and a bus arbiter

method. With the token method, a token (a special control message or signal) is circulating

between the devices connected to a bus and it gives the right to transmit to the bus to a

single device at a time. The bus arbiter receives data transmission requests from the devices

connected to a bus. It selects one device according to a selected strategy (ex. using a system

of assigned priorities) and sends an acknowledge message (signal) to one of the requesting

devices that grants it the transmitting right. After the selected device completes the

transmission, it informs the arbiter that can select another request. The receiver (s) address

is usually given in the header of the message. Special header values are used for the

broadcast and multicasts. All receivers read and decode headers. These devices that are

specified in the header, read-in the data transmitted over the bus.

• The throughput of the network based on a bus can be increased by the use of a multi-bus

network. In this network, processors connected to the busses can transmit data in parallel

(one for each bus) and many processors can read data from many busses at a time.

ii. Crossbar switches

• A crossbar switch is a circuit that enables many interconnect ions between elements of

a parallel system at a time. A crossbar switch has a number of input and output data

pins and a number of control pins. In response to control instructions set to it’s control

input, the crossbar switch implements a stable connection of a determined input with

a determined output.

• The diagrams of a typical crossbar switch are shown in the figure below.

Figure: Crossbar switch a) general scheme, b) internal structure

• Control instructions can request reading the state of specified input and output pins i.e.

their current connections in a crossbar switch.

• Crossbar switches are built with the use of multiplexer circuits, controlled by latch

registers, which are set by control instruct ions.

• Crossbar switches implement direct, single non-blocking connections, but on the condition

that the necessary input and output pins of the switch are free. The connections between

free pins can always be implemented independently on the status of other connect ions.

New connections can be set during data transmissions through other connections.

• The non-blocking connections are a big advantage of crossbar switches. Some crossbar

switches enable broadcast transmissions but in a blocking manner for all other connections.

• The disadvantage of crossbar switches is that extending their size, in the sense of the

number of input/ output pins, is costly in terms of hardware. Because of that, crossbar

switches are built up to the size of 100 input/ output pins.

iii. Multiport Memory

• In the multiport memory system, different memory module and CPUs have separate buses.

• The module has internal control logic to determine port which will access to memory at

any given time. Priorities are assigned to each memory port to resolve memory access

conflicts.

Advantages:

• Because of the multiple paths high transfer rate can be achieved.

Disadvantages:

• It requires expensive memory control logic and a large number of cables and connections.

Figure: Multiport memory organization Multistage and combining networks

• Multistage connection networks are designed with the use of small elementary crossbar

switches (usually they have two inputs) connected in multiple layers. The elementary

crossbar switches can implement 4 types of connections: straight, crossed, upper broadcast

and lower broadcast. All elementary switches are controlled simultaneously. The network

like this is an alternative for crossbar switches if we have to switch a large number of

connect ions, over 100. The extension cost for such a network is relatively low.

• In such networks, there is no full freedom in implementing arbitrary connections when

some connections have already been set in the switch. Because of this property, these

networks belong to the category of blocking networks.

• However, if we increase the number of levels of elementary crossbar switches above the

number necessary to implement connections for all pairs of inputs and outputs, it is possible

to implement all requested connections at the same time but statically, before any

communication is started in the switch. It can be achieved at the cost of additional

redundant hardware included into the switch.

• The block diagram of such a network, called the Benes network, is shown in the figure

below.

Figure: A multistage connection network for parallel systems

• To obtain nonblocking properties of the multistage connection network, the redundancy

level in the circuit should be much increased.

• To build a nonblocking multistage network n x n, the elementary two-input switches have

to be replaced by 3 layers of switches n x m, r x r and m x n, where m³=2n - 1 and r is the

number of elementary switches in the layer 1 and 3. Such a switch was designed by a

French mathematician Clos and it is called the Clos network (also referred as Omega

Network). This switch is commonly used to build large integrated crossbar switches.

• The block diagram of the Clos network is shown in the figure below.

Figure: A nonblocking Clos interconnection network

Cloud Computing
• Cloud Computing provides us means by which we can access the applications as utilities over

the internet. It allows us to create, configure, and customize the business applications online.

• Cloud: The term Cloud refers to a Network or Internet. In other words, we can say that Cloud

is something, which is present at remote location. Cloud can provide services over public and

private networks, i.e., WAN, LAN or VPN.

• Applications such as e-mail, web conferencing, customer relationship management (CRM)

execute on cloud.

• Cloud Computing: Cloud Computing refers to manipulating, configuring, and accessing the

hardware and software resources remotely. It offers online data storage, infrastructure, and

application.

History of Cloud Computing

• The concept of Cloud Computing came into existence in the year 1950 with implementation

of mainframe computers, accessible via thin/static clients. Since then, cloud computing has

been evolved from static clients to dynamic ones and from software to services.

• The following diagram explains the evolution of cloud computing:

Benefits: Cloud Computing has numerous advantages. Some of them are listed below -

• One can access applications as utilities, over the Internet.

• One can manipulate and configure the applications online at any time.

• It does not require to install a software to access or manipulate cloud application.

• Cloud Computing offers online development and deployment tools, programming runtime

environment through PaaS model.

• Cloud resources are available over the network in a manner that provide platform independent

access to any type of clients.

• Cloud Computing offers on-demand self-service. The resources can be used without

interaction with cloud service provider.

• Cloud Computing is highly cost effective because it operates at high efficiency with optimum

utilization. It just requires an Internet connection

• Cloud Computing offers load balancing that makes it more reliable.

Risks related to Cloud Computing

Although cloud Computing is a promising innovation with various benefits in the world of computing,

it comes with risks. Some of them are discussed below:

Security and Privacy: It is the biggest concern about cloud computing. Since data management and

infrastructure management in cloud is provided by third-party, it is always a risk to handover the

sensitive information to cloud service providers.

Although the cloud computing vendors ensure highly secured password protected accounts, any sign

of security breach may result in loss of customers and businesses.

Lock In: It is very difficult for the customers to switch from one Cloud Service Provider (CSP) to

another. It results in dependency on a particular CSP for service.

Isolation Failure: This risk involves the failure of isolation mechanism that separates storage,

memory, and routing between the different tenants.

Management Interface Compromise: In case of public cloud provider, the customer management

interfaces are accessible through the Internet.

Insecure or Incomplete Data Deletion: It is possible that the data requested for deletion may not get

deleted. It happens because either of the following reasons

• Extra copies of data are stored but are not available at the time of deletion

• Disk that stores data of multiple tenants is destroyed.

Characteristics of Cloud Computing

There are four key characteristics of cloud computing. They are shown in the following diagram:

On Demand Self Service

• Cloud Computing allows the users to use web services and resources on demand. One can logon

to a website at any time and use them.

Broad Network Access

• Since cloud computing is completely web based, it can be accessed from anywhere and at any

time.

Resource Pooling

• Cloud computing allows multiple tenants to share a pool of resources. One can share single

physical instance of hardware, database and basic infrastructure.

Rapid Elasticity

• It is very easy to scale the resources vertically or horizontally at any time. Scaling of resources

means the ability of resources to deal with increasing or decreasing demand.

• The resources being used by customers at any given point of time are automatically monitored.

Measured Service

• In this service cloud provider controls and monitors all the aspects of cloud service. Resource

optimization, billing, and capacity planning etc. depend on it.

Basic working models of cloud computing

There are certain services and models working behind the scene making the cloud computing feasible

and accessible to end users. Following are the working models for cloud computing:

• Deployment Models

• Service Models

Deployment Models

Deployment models define the type of access to the cloud, i.e., how the cloud is located? Cloud can

have any of the four types of access: Public, Private, Hybrid, and Community.

I) Public Cloud: The public cloud allows systems and services to be easily accessible to the general

public. Public cloud may be less secure because of its openness.

II) Private Cloud: The private cloud allows systems and services to be accessible within an

organization. It is more secured because of its private nature.

III) Community Cloud: The community cloud allows systems and services to be accessible by a group

of organizations.

IV) Hybrid Cloud: The hybrid cloud is a mixture of public and private cloud, in which the critical

activities are performed using private cloud while the non-critical activities are performed using public

cloud.

Public Cloud Model
Public Cloud allows systems and services to be easily accessible to general public. The IT giants such

as Google, Amazon and Microsoft offer cloud services via Internet. The Public Cloud Model is shown

in the diagram below.

Benefits

There are many benefits of deploying cloud as public cloud model. The following diagram shows some

of those benefits:

Cost Effective: Since public cloud shares same resources with large number of customers it turns out

inexpensive.

Reliability: The public cloud employs large number of resources from different locations. If any of the

resources fails, public cloud can employ another one.

Flexibility: The public cloud can smoothly integrate with private cloud, which gives customers a

flexible approach.

Location Independence: Public cloud services are delivered through Internet, ensuring location

independence.

Utility Style Costing: Public cloud is also based on pay-per-use model and resources are accessible

whenever customer needs them.

High Scalability: Cloud resources are made available on demand from a pool of resources, i.e., they

can be scaled up or down according the requirement.

Disadvantages: Here are some disadvantages of public cloud model:

Low Security: In public cloud model, data is hosted off-site and resources are shared publicly,

therefore does not ensure higher level of security.

Less Customizable: It is comparatively less customizable than private cloud.

Private Cloud Model
• Private Cloud allows systems and services to be accessible within an organization. The Private

Cloud is operated only within a single organization. However, it may be managed internally by

the organization itself or by third-party.

• The private cloud model is shown in the diagram below.

Benefits

There are many benefits of deploying cloud as private cloud model. The following diagram shows

some of those benefits:

High Security and Privacy: Private cloud operations are not available to general public and resources

are shared from distinct pool of resources. Therefore, it ensures high security and privacy.

More Control: The private cloud has more control on its resources and hardware than public cloud

because it is accessed only within an organization.

Cost and Energy Efficiency: The private cloud resources are not as cost effective as resources in

public clouds but they offer more efficiency than public cloud resources.

Disadvantages: Here are the disadvantages of using private cloud model:

Restricted Area of Operation: The private cloud is only accessible locally and is very difficult to

deploy globally.

High Priced: Purchasing new hardware in order to fulfill the demand is a costly transaction.

Limited Scalability: The private cloud can be scaled only within capacity of internal hosted resources.

Additional Skills: In order to maintain cloud deployment, organization requires skilled expertise.

Hybrid Cloud Model

Hybrid Cloud is a mixture of public and private cloud. Non-critical activities are performed using

public cloud while the critical activities are performed using private cloud. The Hybrid Cloud Model

is shown in the diagram below.

Benefits

There are many benefits of deploying cloud as hybrid cloud model. The following diagram shows some

of those benefits:

Scalability: It offers features of both, the public cloud scalability and the private cloud scalability.

Flexibility: It offers secure resources and scalable public resources.

Cost Efficiency: Public clouds are more cost effective than private ones. Therefore, hybrid clouds can

be cost saving.

Security: The private cloud in hybrid cloud ensures higher degree of security.

Disadvantages

Networking Issues: Networking becomes complex due to presence of private and public cloud.

Security Compliance: It is necessary to ensure that cloud services are compliant with security policies

of the organization.

Infrastructure Dependency: The hybrid cloud model is dependent on internal IT infrastructure,

therefore it is necessary to ensure redundancy across data centers.

Community Cloud Model
• Community Cloud allows system and services to be accessible by group of organizations. It

shares the infrastructure between several organizations from a specific community. It may be

managed internally by organizations or by the third-party.

• The Community Cloud Model is shown in the diagram below.

Benefits

There are many benefits of deploying cloud as community cloud model.

Cost Effective: Community cloud offers same advantages as that of private cloud at low cost.

Sharing Among Organizations: Community cloud provides an infrastructure to share cloud resources

and capabilities among several organizations.

Security: The community cloud is comparatively more secure than the public cloud but less secured

than the private cloud.

Issues

• Since all data is located at one place, one must be careful in storing data in community cloud

because it might be accessible to others.

• It is also challenging to allocate responsibilities of governance, security and cost among

organizations.

Service Models
Cloud computing is based on service models. These are categorized into three basic service models

which are -

• Infrastructure-as–a-Service (IaaS)

• Platform-as-a-Service (PaaS)

• Software-as-a-Service (SaaS)

Anything-as-a-Service (XaaS) is yet another service model, which includes Network-as-a-Service,

Business-as-a-Service, Identity-as-a-Service, Database-as-a-Service or Strategy-as-a-Service.

The Infrastructure-as-a-Service (IaaS) is the most basic level of service. Each of the service models

inherit the security and management mechanism from the underlying model, as shown in the following

diagram:

Infrastructure-as-a-Service (IaaS): IaaS provides access to fundamental resources such as physical

machines, virtual machines, virtual storage, etc.

Platform-as-a-Service (PaaS): PaaS provides the runtime environment for applications, development

and deployment tools, etc.

Software-as-a-Service (SaaS): SaaS model allows to use software applications as a service to end-

users.

Top Cloud Service Providers Companies in the World
Nowadays, there are many companies which are coming with cloud services and are performing better

day by day. These Cloud Service Providers, are providing: SaaS, PaaS, IaaS. So, let’s discuss about

some top Cloud Service Providers in the world.

1. Cloud Service Providers

Earlier the data was stored in hard drives which were not reliable and secure as the drive can access by

anyone. Today the cloud computing services have replaced search hard drive technology and came

with a new concept called cloud technology in which the data store in the cloud. There are many

companies which provide Cloud computing service and they are very reliable.

2. Services Provided by Cloud Providers

These are the service, which offers by Cloud Computing Providers:

i. Software as a Service (SaaS): Software as a service, a cloud service provided by the cloud company.

In SaaS, a customer provides software which can be either for a particular amount of time or for the

lifetime. SaaS utilizes the internet and delivers the application to the customer. Most of the SaaS

application does not require any downloads as they can use directly through the web browser.

ii. Platform as a Service (PaaS): Platform as a service is a framework for the developer where they can

create an application for customizing the previously built application. This service also provided

through the means of internet and here all the management is done by the enterprise or any third party

provider.

iii. Infrastructure as a Service (IaaS): Infrastructure as a service, provided by the Cloud Service

providers which help the customer to access and monitor things like computer, networking, and other

services. In IaaS, the customer can purchase resources on demand rather than buying hardware which

is costly and hard to maintain.

3. List of Cloud Service Providers

There are many Cloud Service providers in the market:

i. Amazon Web Service (AWS) ii. Microsoft Azure

https://data-flair.training/blogs/learn-cloud-computing-tutorial/
https://data-flair.training/blogs/platform-as-a-service-paas/

iii. Google Cloud Platform

iv. IBM Cloud Services

v. Adobe Creative Cloud

vi. Kamatera

vii. VMware

viii. Rackspace

ix. Red Hat

x. Salesforce

xi. Oracle Cloud

xii. SAP

xiii. Verizon Cloud

xiv. Navisite

xv. Dropbox

Some top Cloud Service providers of the market:

i. Amazon Web Services (AWS)

• Amazon Web Services is a cloud computing platform which provides services such as compute

power, database storage, content delivery and many other functions which will help to integrate

a business. The Amazon Web Services is flexible, scalable, and reliable and due to this many

companies are implementing it in their work. There is no upfront cost and the customer has to

pay only for what they have used. It is one of the leading cloud service providers among all.

• With the help of the internet, the customer can access highly durable storage such as Amazon

Glacier, Amazon S3, and Amazon EBS. It also has a high-performance database such as

Amazon Redshift, Amazon Dynamo DB, Amazon ElastiCache and Amazon RDS.

Cloud Service Providers – AWS

ii. Microsoft Azure

• Microsoft Azure is a cloud computing service which is used for building testing deploying and

managing the application. This process is done in a global network of the Microsoft-managed

data centre. It is private as well as a public cloud platform. It uses virtualization which

differentiates the coupling between the operating system and CPU with the help of an

abstraction layer known as a hypervisor.

• This hypervisor emulates all the functionality of the physical machine such as hardware and

server into a virtual one. There is numerous amount of virtual machine available and each

virtual machine can run many operating systems.

• In the data centre of Microsoft, there are many servers and each server consists of a hypervisor

through which multiple virtual machines can operate. With the help of Azure, it is easy for

developers and IT professionals to manage and deploy their applications and services.

https://data-flair.training/blogs/Amazon-Glacier/
https://data-flair.training/blogs/Amazon-Glacier/
https://data-flair.training/blogs/aws-rds/
https://data-flair.training/blogs/what-is-public-cloud/
https://d2h0cx97tjks2p.cloudfront.net/blogs/wp-content/uploads/sites/2/2018/12/prod-art-aws-600.width-1200.png

iii. Google Cloud Platform

• Google cloud platform is one of the leading Cloud Computing services which are offered by

Google and it runs on the same infrastructure that Google uses for its end-user products. The

Google cloud platform is basically used for Google search and YouTube. There are various

services offered by Google Cloud such as data analysis, machine learning, and data storage.

• The data stored in Google Cloud is secure and can access easily. It offers varieties of services

from infrastructure as a service to platform as a service. Google also provides a

strong commitment to security and stability. With the help of the Google cloud platform, the

user is free to think about the code and the feature which are needed to develop without

worrying about the operations side.

• Here most of the services fully manage and details quite easy for the customer to concentrate

on their work. In this, machine learning and the use of API are very easy. The API also helps

in speech detection language translation very easily. So it prefers among the customers.

Cloud Service Providers – Google Cloud Platform

iv. IBM Cloud Services

• IBM cloud offers services such as platform as a service and infrastructure as a service. This

cloud organization can deploy and access its resources such as storage networking and compute

power with the help of internet. There are several tools which help the customer to draw on

deep industry expertise.

• The speed and agility of the cloud fulfil the requirement of the customer and make them feel

satisfied. A customer using IBM cloud can easily find growth opportunities, generating new

revenue schemes and improving the operational efficiency. The uses of IBM cloud don’t have

many barriers as compared to traditional technologies.

• IBM cloud eliminates the complex problem and the problems which face by large companies.

IBM Cloud computing services are also helping home appliance manufacturer, retailer, and

medical supply businesses. It uses in because it offers the best services with the price as low as

possible.

https://data-flair.training/blogs/cloud-security/
https://data-flair.training/blogs/machine-learning-tutorial/
https://d2h0cx97tjks2p.cloudfront.net/blogs/wp-content/uploads/sites/2/2018/12/Horizon-Cloud-on-Azure_t.png
https://d2h0cx97tjks2p.cloudfront.net/blogs/wp-content/uploads/sites/2/2018/12/Google-Cloud-Logo-Lockup-MAIN-png-1.png

Cloud Service Providers – IBM Cloud Services

v. Adobe Creative Cloud

• Adobe creative cloud provides the best experience of apps services design photography and

web. The Adobe cloud services provide tutorials and templates with which a beginner can easily

access the cloud and can start using it. It provides many facilities to the beginner as well as

professionals for easy access to the cloud.

• It consists of many applications and services that provide access to a collection of software

which uses for video editing, web development, photography, and graphic designs. There are

mobile applications as well as computer applications which can use by the customers.

• Creative Cloud allows you to work from anywhere and from any device as the files can save to

the cloud and can access at any time from anywhere. Creative Cloud was the first host

on Amazon Web Services but as per the new agreement with Microsoft, the Adobe creative

cloud now hosted on Microsoft Azure.

Cloud Service Providers – Adobe Creative Cloud

Services Provided by Cloud Providers

Name of

Company
 IaaS Paas SaaS

AWS Amazon EC2 Amazon Web Services Amazon Web Services

Microsoft Microsoft Private Cloud Microsoft Azure Microsoft Office 365

Google – Google App Engine Google Applications

https://data-flair.training/blogs/cloud-computing-applications/
https://d2h0cx97tjks2p.cloudfront.net/blogs/wp-content/uploads/sites/2/2018/12/IBM-Cloud.png
https://d2h0cx97tjks2p.cloudfront.net/blogs/wp-content/uploads/sites/2/2018/12/AdobeCC_logo-1.png

(Python, Java and many)

IBM Smart Cloud Enterprise
Smart Cloud

Application Services
SaaS Products

Adobe – Adobe Creative Cloud Acrobat, Flash player, etc.

Conclusion

• Cloud Computing is helping a lot in business whether it is a small or large.

• These Cloud Service Providers companies provide storage database server networking and the

software through which the business can increase. So, a customer can choose the company

which is most suitable for their business and their requirement.

1

Unit-IV
Memory Hierarchy Design and its Characteristics

In the Computer System Design, Memory Hierarchy is an enhancement to organize the memory such that

it can minimize the access time. The Memory Hierarchy was developed based on a program behaviour

known as locality of references. The figure below clearly demonstrates the different levels of memory

hierarchy:

This Memory Hierarchy Design is divided into 2 main types:

1. External Memory or Secondary Memory: Comprising of Magnetic Disk, Optical Disk,

Magnetic Tape i.e. peripheral storage devices which are accessible by the processor via I/O

Module.

2. Internal Memory or Primary Memory: Comprising of Main Memory, Cache Memory &

CPU registers. This is directly accessible by the processor.

We can infer the following characteristics of Memory Hierarchy Design from above figure:

1. Capacity: It is the global volume of information the memory can store. As we move from top

to bottom in the Hierarchy, the capacity increases.

2. Access Time: It is the time interval between the read/write request and the availability of the

data. As we move from top to bottom in the Hierarchy, the access time increases.

3. Performance: Earlier when the computer system was designed without Memory Hierarchy

design, the speed gap increases between the CPU registers and Main Memory due to large

difference in access time. This results in lower performance of the system and thus,

enhancement was required. This enhancement was made in the form of Memory Hierarchy

Design because of which the performance of the system increases. One of the most significant

ways to increase system performance is minimizing how far down the memory hierarchy one

has to go to manipulate data.

4. Cost per bit: As we move from bottom to top in the Hierarchy, the cost per bit increases i.e.

Internal Memory is costlier than External Memory.

2

Cache Memory in Computer Organization

• Cache Memory is a special very high-speed memory. It is used to speed up and synchronizing with

high-speed CPU. Cache memory is costlier than main memory or disk memory but economical than

CPU registers. Cache memory is an extremely fast memory type that acts as a buffer between RAM

and the CPU. It holds frequently requested data and instructions so that they are immediately

available to the CPU when needed.

• Cache memory is used to reduce the average time to access data from the Main memory. The cache

is a smaller and faster memory which stores copies of the data from frequently used main memory

locations. There are various independent caches in a CPU, which store instructions and data.

Levels of memory:

• Level 1 or Register: It is a type of memory in which data is stored and accepted that are

immediately stored in CPU. Most commonly used register is accumulator, Program counter,

address register etc.

• Level 2 or Cache memory: It is the fastest memory which has faster access time where data

is temporarily stored for faster access.

• Level 3 or Main Memory: It is memory on which computer works currently. It is small in

size and once power is off data no longer stays in this memory.

• Level 4 or Secondary Memory: It is external memory which is not as fast as main memory

but data stays permanently in this memory.

Application of Cache Memory –

1. Usually, the cache memory can store a reasonable number of blocks at any given time, but

this number is small compared to the total number of blocks in the main memory.

2. The correspondence between the main memory blocks and those in the cache is specified by

a mapping function.

Types of Cache –

1. Primary Cache: A primary cache is always located on the processor chip. This cache is small

and its access time is comparable to that of processor registers.

2. Secondary Cache: Secondary cache is placed between the primary cache and the rest of the

memory. It is referred to as the level 2 (L2) cache. Often, the Level 2 cache is also housed on

the processor chip.

3

Cache Performance:
When the processor needs to read or write a location in main memory, it first checks for a corresponding

entry in the cache.

• If the processor finds that the memory location is in the cache, a cache hit has occurred, and

data is read from cache

• If the processor does not find the memory location in the cache, a cache miss has occurred.

For a cache miss, the cache allocates a new entry and copies in data from main memory, then

the request is fulfilled from the contents of the cache.

The performance of cache memory is frequently measured in terms of a quantity called Hit ratio.

Hit ratio = hit / (hit + miss) = no. of hits/total accesses

We can improve Cache performance using higher cache block size, higher associativity, reduce miss rate,

reduce miss penalty, and reduce the time to hit in the cache.

Average memory access time

• The average memory access time, or AMAT, can then be computed.

• AMAT = Hit time + (Miss rate x Miss penalty) This is just averaging the amount of time for cache

hits and the amount of time for cache misses.

How can we improve the average memory access time of a system?

• Obviously, a lower AMAT is better.

• Miss penalties are usually much greater than hit times, so the best way to lower AMAT is to reduce

the miss penalty or the miss rate.

• However, AMAT should only be used as a general guideline. Remember that execution time is still

the best performance metric.

Locality of Reference and Cache Operation in Cache Memory

Locality of reference refers to a phenomenon in which a computer program tends to access same set of

memory locations for a particular time period. In other words, Locality of Reference refers to the tendency

of the computer program to access instructions whose addresses are near one another. The property of locality

of reference is mainly shown by loops and subroutine calls in a program.

1. In case of loops in program control processing unit repeatedly refers to the set of instructions

that constitute the loop.

2. In case of subroutine calls, every time the set of instructions are fetched from memory.

3. References to data items also get localized that means same data item is referenced again and

again.

4

In the above figure, we can see that the CPU wants to read or fetch the data or instruction.

• First, it will access the cache memory as it is near to it and provides very fast access. If the required

data or instruction is found, it will be fetched. This situation is known as a cache hit.

• But if the required data or instruction is not found in the cache memory then this situation is known

as a cache miss.

Now the main memory will be searched for the required data or instruction that was being searched and if

found will go through one of the two ways:

1. First way is that the CPU should fetch the required data or instruction and use it and that’s it

but what, when the same data or instruction is required again. CPU again has to access the

same main memory location for it and we already know that main memory is the slowest to

access.

2. The second way is to store the data or instruction in the cache memory so that if it is needed

soon again in the near future it could be fetched in a much faster way.

Cache Operation:
It is based on the principle of locality of reference. There are two ways with which data or instruction is

fetched from main memory and get stored in cache memory. These two ways are the following:

i. Temporal Locality:

• Temporal locality means current data or instruction that is being fetched may be needed soon. So

we should store that data or instruction in the cache memory so that we can avoid again searching

in main memory for the same data.

• When CPU accesses the current main memory location for reading required data or instruction, it also

gets stored in the cache memory which is based on the fact that same data or instruction may be needed

in near future. This is known as temporal locality. If some data is referenced, then there is a high

probability that it will be referenced again in the near future.

5

ii. Spatial Locality:

• Spatial locality means instruction or data near to the current memory location that is being fetched,

may be needed soon in the near future. This is slightly different from the temporal locality. Here we

are talking about nearly located memory locations while in temporal locality we were talking about

the actual memory location that was being fetched.

6

Cache Mapping
There are three different types of mapping used for the purpose of cache memory which are as follows:

Direct mapping, Associative mapping, and Set-Associative mapping. These are explained below.

1. Direct Mapping –

• The simplest technique, known as direct mapping, maps each block of main memory into only one

possible cache line. Or

• In Direct mapping, assign each memory block to a specific line in the cache. If a line is previously

taken up by a memory block when a new block needs to be loaded, the old block is trashed. An

address space is split into two parts index field and a tag field. The cache is used to store the tag

field whereas the rest is stored in the main memory. Direct mapping`s performance is directly

proportional to the Hit ratio.

i = j modulo m

where

i=cache line number

j= main memory block number

m=number of lines in the cache

• For purposes of cache access, each main memory address can be viewed as consisting of three fields.

The least significant w bits identify a unique word or byte within a block of main memory. In most

contemporary machines, the address is at the byte level. The remaining s bits specify one of the

2s blocks of main memory. The cache logic interprets these s bits as a tag of s-r bits (most significant

portion) and a line field of r bits. This latter field identifies one of the m=2r lines of the cache.

7

Problem-01:

Consider a direct mapped cache of size 16 KB with block size 256 bytes. The size of main memory is 128

KB. Find-

• Number of bits in tag

• Tag directory size

Solution-

Given-

Cache memory size = 16 KB

Block size = Frame size = Line size = 256 bytes

Main memory size = 128 KB

 We consider that the memory is byte addressable.

Number of Bits in Physical Address-

We have,

Size of main memory = 128 KB=128*1024B=2^7*2^10B = 217 bytes

Thus, Number of bits in physical address = 17 bits

Number of Bits in Block Offset-

We have,

Block size = 256 bytes = 28 bytes

Thus, Number of bits in block offset = 8 bits

Number of Bits in Line Number-

Total number of lines in cache

= Cache size / Line size

= 16 KB / 256 bytes=16*1024B/256B=2^4*2^10B/2^8B

= 214 bytes / 28 bytes = 26 lines

Thus, Number of bits in line number = 6 bits

 Number of Bits in Tag-

 Number of bits in tag

= Number of bits in physical address – (Number of bits in line number + Number of bits in block offset)

= 17 bits – (6 bits + 8 bits) = 17 bits – 14 bits = 3 bits

Thus, Number of bits in tag = 3 bits

8

 Tag Directory Size-

 Tag directory size

= Number of tags x Tag size

= Number of lines in cache x Number of bits in tag

= 26 x 3 bits

= 192 bits=192/8 byte

= 24 bytes

Thus, size of tag directory = 24 bytes

Problem-02:

Consider a direct mapped cache of size 512 KB with block size 1 KB. There are 7 bits in the tag. Find-

• Size of main memory

• Tag directory size

Solution-

Given-

Cache memory size = 512 KB

Block size = Frame size = Line size = 1 KB

Number of bits in tag = 7 bits

We consider that the memory is byte addressable.

Number of Bits in Block Offset-

We have,

Block size

= 1 KB = 210 bytes

Thus, Number of bits in block offset = 10 bits

Number of Bits in Line Number-

Total number of lines in cache

= Cache size / Line size

= 512 KB / 1 KB = 29 lines

Thus, Number of bits in line number = 9 bits

Number of Bits in Physical Address-

Number of bits in physical address

= Number of bits in tag + Number of bits in line number + Number of bits in block offset

= 7 bits + 9 bits + 10 bits = 26 bits

Thus, Number of bits in physical address = 26 bits

Size of Main Memory-

We have,

Number of bits in physical address = 26 bits

Thus, Size of main memory

= 226 bytes

= 64 MB

9

Tag Directory Size-

Tag directory size

= Number of tags x Tag size

= Number of lines in cache x Number of bits in tag

= 29 x 7 bits = 3584 bits = 448 bytes

Thus, size of tag directory = 448 bytes

Problem-03:

Consider a direct mapped cache with block size 4 KB. The size of main memory is 16 GB and there are

10 bits in the tag. Find-

• Size of cache memory

• Tag directory size

Solution-

Given-

Block size = Frame size = Line size = 4 KB

Size of main memory = 16 GB

Number of bits in tag = 10 bits

We consider that the memory is byte addressable.

Number of Bits in Physical Address-

We have,

Size of main memory = 16 GB = 234 bytes

Thus, Number of bits in physical address = 34 bits

Number of Bits in Block Offset-

We have,

Block size = 4 KB = 212 bytes

Thus, Number of bits in block offset = 12 bits

 Number of Bits in Line Number-

 Number of bits in line number

= Number of bits in physical address – (Number of bits in tag + Number of bits in block offset)

= 34 bits – (10 bits + 12 bits) = 34 bits – 22 bits = 12 bits

Thus, Number of bits in line number = 12 bits

10

Number of Lines in Cache-

We have-

Number of bits in line number = 12 bits

Thus, Total number of lines in cache = 212 lines

Size of Cache Memory-

Size of cache memory

= Total number of lines in cache x Line size

= 212 x 4 KB = 214 KB = 16 MB

Thus, Size of cache memory = 16 MB

Tag Directory Size-

Tag directory size

= Number of tags x Tag size

= Number of lines in cache x Number of bits in tag

= 212 x 10 bits = 40960 bits = 5120 bytes

Thus, size of tag directory = 5120 bytes

Problem-04:

Consider a direct mapped cache of size 32 KB with block size 32 bytes. The CPU generates 32 bit

addresses. The number of bits needed for cache indexing and the number of tag bits are respectively-

• 10, 17

• 10, 22

• 15, 17

• 5, 17

Solution-

Given-

Cache memory size = 32 KB

Block size = Frame size = Line size = 32 bytes

Number of bits in physical address = 32 bits

Number of Bits in Block Offset-

We have,

Block size

= 32 bytes = 25 bytes

Thus, Number of bits in block offset = 5 bits

Number of Bits in Line Number-

 Total number of lines in cache

= Cache size / Line size

= 32 KB / 32 bytes = 210 lines

Thus, Number of bits in line number = 10 bits

11

Number of Bits Required For Cache Indexing-

Number of bits required for cache indexing

= Number of bits in line number

= 10 bits

Number Of Bits in Tag-

Number of bits in tag

= Number of bits in physical address – (Number of bits in line number + Number of bits in block offset)

= 32 bits – (10 bits + 5 bits) = 32 bits – 15 bits = 17 bits

Thus, Number of bits in tag = 17 bits

 Thus, Option (A) is correct.

Problem-05:

Consider a machine with a byte addressable main memory of 232 bytes divided into blocks of size 32

bytes. Assume that a direct mapped cache having 512 cache lines is used with this machine. The size of

the tag field in bits is ______.

Solution-

Given-

Main memory size = 232 bytes

Block size = Frame size = Line size = 32 bytes

Number of lines in cache = 512 lines

Number of Bits in Physical Address-

We have,

Size of main memory

= 232 bytes

Thus, Number of bits in physical address = 32 bits

Number of Bits in Block Offset-

We have,

Block size

= 32 bytes = 25 bytes

Thus, Number of bits in block offset = 5 bits

Number of Bits in Line Number-

Total number of lines in cache

= 512 lines = 29 lines

Thus, Number of bits in line number = 9 bits

12

Number Of Bits in Tag-

Number of bits in tag

= Number of bits in physical address – (Number of bits in line number + Number of bits in block offset)

= 32 bits – (9 bits + 5 bits) = 32 bits – 14 bits = 18 bits

Thus, Number of bits in tag = 18 bits

Problem-06:

An 8 KB direct-mapped write back cache is organized as multiple blocks, each of size 32 bytes. The

processor generates 32-bit addresses. The cache controller maintains the tag information for each cache

block comprising of the following-

1 valid bit

1 modified bit

As many bits as the minimum needed to identify the memory block mapped in the cache

What is the total size of memory needed at the cache controller to store meta data (tags) for the cache?

• 4864 bits

• 6144 bits

• 6656 bits

• 5376 bits

Solution-

Given-

Cache memory size = 8 KB

Block size = Frame size = Line size = 32 bytes

Number of bits in physical address = 32 bits

Number of Bits in Block Offset-

We have,

Block size

= 32 bytes = 25 bytes

Thus, Number of bits in block offset = 5 bits

13

Number of Bits in Line Number-

Total number of lines in cache

= Cache memory size / Line size

= 8 KB / 32 bytes = 213 bytes / 25 bytes = 28 lines

Thus, Number of bits in line number = 8 bits

Number Of Bits in Tag-

Number of bits in tag

= Number of bits in physical address – (Number of bits in line number + Number of bits in block offset)

= 32 bits – (8 bits + 5 bits) = 32 bits – 13 bits = 19 bits

Thus, Number of bits in tag = 19 bits

Memory Size Needed At Cache Controller-

Size of memory needed at cache controller

= Number of lines in cache x (1 valid bit + 1 modified bit + 19 bits to identify block)

= 28 x 21 bits

= 5376 bits

2. Associative Mapping –

• In this type of mapping, the associative memory is used to store content and addresses of the

memory word. Any block can go into any line of the cache. This means that the word id bits are

used to identify which word in the block is needed, but the tag becomes all of the remaining bits.

This enables the placement of any word at any place in the cache memory. It is considered to be the

fastest and the most flexible mapping form.

14

Problem-01:

Consider a fully associative mapped cache of size 16 KB with block size 256 bytes. The size of main

memory is 128 KB. Find-

• Number of bits in tag

• Tag directory size

Solution-

Given-

Cache memory size = 16 KB

Block size = Frame size = Line size = 256 bytes

Main memory size = 128 KB

• We consider that the memory is byte addressable.

Number of Bits in Physical Address-

We have,

Size of main memory

= 128 KB=27*210B= 217 bytes

Thus, Number of bits in physical address = 17 bits

Number of Bits in Block Offset-

We have,

Block size

= 256 bytes = 28 bytes

Thus, Number of bits in block offset = 8 bits

Number of Bits in Tag-

Number of bits in tag

= Number of bits in physical address – Number of bits in block offset

= 17 bits – 8 bits = 9 bits

Thus, Number of bits in tag = 9 bits

Number of Lines in Cache-

Total number of lines in cache

= Cache size / Line size

= 16 KB / 256 bytes = 214 bytes / 28 bytes = 26 lines

Tag Directory Size-

Tag directory size

= Number of tags x Tag size

= Number of lines in cache x Number of bits in tag

= 26 x 9 bits = 576 bits = 72 bytes

Thus, size of tag directory = 72 bytes

15

Problem-02:

Consider a fully associative mapped cache of size 512 KB with block size 1 KB. There are 17 bits in the

tag. Find-

• Size of main memory

• Tag directory size

Solution-

Given-

Cache memory size = 512 KB

Block size = Frame size = Line size = 1 KB

Number of bits in tag = 17 bits

• We consider that the memory is byte addressable.

Number of Bits in Block Offset-

We have,

Block size

= 1 KB = 210 bytes

Thus, Number of bits in block offset = 10 bits

Number of Bits in Physical Address-

Number of bits in physical address

= Number of bits in tag + Number of bits in block offset

= 17 bits + 10 bits = 27 bits

Thus, Number of bits in physical address = 27 bits

Size of Main Memory-

We have,

Number of bits in physical address = 27 bits

Thus, Size of main memory

= 227 bytes = 128 MB

Number of Lines in Cache-

Total number of lines in cache

= Cache size / Line size

= 512 KB / 1 KB = 512 lines = 29 lines

Tag Directory Size-

Tag directory size

= Number of tags x Tag size

= Number of lines in cache x Number of bits in tag

= 29 x 17 bits

= 8704 bits

= 1088 bytes

Thus, size of tag directory = 1088 bytes

16

Problem-03:

Consider a fully associative mapped cache with block size 4 KB. The size of main memory is 16 GB.

Find the number of bits in tag.

Solution-

Given-

Block size = Frame size = Line size = 4 KB

Size of main memory = 16 GB

• We consider that the memory is byte addressable.

Number of Bits in Physical Address-

We have,

Size of main memory

= 16 GB = 234 bytes

Thus, Number of bits in physical address = 34 bits

Number of Bits in Block Offset-

We have,

Block size

= 4 KB = 212 bytes

Thus, Number of bits in block offset = 12 bits

Number of Bits in Tag-

Number of bits in tag

= Number of bits in physical address – Number of bits in block offset

= 34 bits – 12 bits = 22 bits

Thus, Number of bits in tag = 22 bits

3. Set-associative Mapping –

• This form of mapping is an enhanced form of direct mapping where the drawbacks of direct

mapping are removed. Set associative addresses the problem of possible thrashing in the direct

mapping method. It does this by saying that instead of having exactly one line that a block can map

to in the cache, we will group a few lines together creating a set. Then a block in memory can map

to any one of the lines of a specific set. Set-associative mapping allows that each word that is present

in the cache can have two or more words in the main memory for the same index address. Set

associative cache mapping combines the best of direct and associative cache mapping techniques.

In this case, the cache consists of a number of sets, each of which consists of a number of

lines. The relationships are

m = v * k

i= j mod v

17

where

i=cache set number

j=main memory block number

v=number of sets

m=number of lines in the cache number of sets

k=number of lines in each set

Set Associative Cache:

• Set associative cache employs set associative cache mapping technique.

 The following steps explain the working of set associative cache-

 After CPU generates a memory request,

• The set number field of the address is used to access the particular set of the cache.

• The tag field of the CPU address is then compared with the tags of all k lines within that set.

• If the CPU tag matches to the tag of any cache line, a cache hit occurs.

• If the CPU tag does not match to the tag of any cache line, a cache miss occurs.

• In case of a cache miss, the required word has to be brought from the main memory.

• If the cache is full, a replacement is made in accordance with the employed replacement policy.

18

EXAMPLES:

Problem-01:

Consider a 2-way set associative mapped cache of size 16 KB with block size 256 bytes. The size of main

memory is 128 KB. Find-

• Number of bits in tag

• Tag directory size

Solution-

Given-

Set size = 2

Cache memory size = 16 KB

Block size = Frame size = Line size = 256 bytes

Main memory size = 128 KB

• We consider that the memory is byte addressable.

Number of Bits in Physical Address-

We have,

Size of main memory

= 128 KB = 217 bytes

Thus, Number of bits in physical address = 17 bits

Number of Bits in Block Offset-

We have,

Block size

= 256 bytes = 28 bytes

Thus, Number of bits in block offset = 8 bits

Number of Lines in Cache-

Total number of lines in cache

= Cache size / Line size

= 16 KB / 256 bytes = 214 bytes / 28 bytes = 64 lines

Thus, Number of lines in cache = 64 lines

Number of Sets in Cache-

Total number of sets in cache

= Total number of lines in cache / Set size

= 64 / 2 = 32 sets = 25 sets

Thus, Number of bits in set number = 5 bits

19

Number of Bits in Tag-

Number of bits in tag

= Number of bits in physical address – (Number of bits in set number + Number of bits in block offset)

= 17 bits – (5 bits + 8 bits) = 17 bits – 13 bits = 4 bits

Thus, Number of bits in tag = 4 bits

Tag Directory Size-

Tag directory size

= Number of tags x Tag size

= Number of lines in cache x Number of bits in tag

= 64 x 4 bits = 256 bits = 32 bytes

Thus, size of tag directory = 32 bytes

Problem-02:

Consider a 8-way set associative mapped cache of size 512 KB with block size 1 KB. There are 7 bits in

the tag. Find-

• Size of main memory

• Tag directory size

Solution-

Given-

Set size = 8

Cache memory size = 512 KB

Block size = Frame size = Line size = 1 KB

Number of bits in tag = 7 bits

• We consider that the memory is byte addressable.

Number of Bits in Block Offset-

We have,

Block size

= 1 KB = 210 bytes

Thus, Number of bits in block offset = 10 bits

Number of Lines in Cache-

Total number of lines in cache

= Cache size / Line size

= 512 KB / 1 KB = 512 lines

Thus, Number of lines in cache = 512 lines

Number of Sets in Cache-

Total number of sets in cache

= Total number of lines in cache / Set size

= 512 / 8 = 64 sets = 26 sets

Thus, Number of bits in set number = 6 bits

20

Number of Bits in Physical Address-

Number of bits in physical address

= Number of bits in tag + Number of bits in set number + Number of bits in block offset

= 7 bits + 6 bits + 10 bits = 23 bits

Thus, Number of bits in physical address = 23 bits

Size of Main Memory-

We have,

Number of bits in physical address = 23 bits

Thus, Size of main memory

= 223 bytes = 8 MB

Tag Directory Size-

Tag directory size

= Number of tags x Tag size

= Number of lines in cache x Number of bits in tag

= 512 x 7 bits = 3584 bits = 448 bytes

Thus, size of tag directory = 448 bytes

Problem-03:

Consider a 4-way set associative mapped cache with block size 4 KB. The size of main memory is 16 GB

and there are 10 bits in the tag. Find-

• Size of cache memory

• Tag directory size

Solution-

Given-

Set size = 4

Block size = Frame size = Line size = 4 KB

Main memory size = 16 GB

Number of bits in tag = 10 bits

• We consider that the memory is byte addressable.

Number of Bits in Physical Address-

We have,

Size of main memory

= 16 GB = 234 bytes

Thus, Number of bits in physical address = 34 bits

Number of Bits in Block Offset-

We have,

Block size

= 4 KB = 212 bytes

Thus, Number of bits in block offset = 12 bits

21

Number of Bits in Set Number-

Number of bits in set number

= Number of bits in physical address – (Number of bits in tag + Number of bits in block offset)

= 34 bits – (10 bits + 12 bits) = 34 bits – 22 bits = 12 bits

Thus, Number of bits in set number = 12 bits

Number of Sets in Cache-

We have-

Number of bits in set number = 12 bits

Thus, Total number of sets in cache = 212 sets

Number of Lines in Cache-

We have-

Total number of sets in cache = 212 sets

Each set contains 4 lines

Thus,

Total number of lines in cache

= Total number of sets in cache x Number of lines in each set

= 212 x 4 lines = 214 lines

Size of Cache Memory-

Size of cache memory

= Total number of lines in cache x Line size

= 214 x 4 KB = 216 KB = 64 MB

Thus, Size of cache memory = 64 MB

Tag Directory Size-

Tag directory size

= Number of tags x Tag size

= Number of lines in cache x Number of bits in tag

= 214 x 10 bits = 163840 bits = 20480 bytes = 20 KB

Thus, size of tag directory = 20 KB

Problem-04:

Consider a 8-way set associative mapped cache. The size of cache memory is 512 KB and there are 10

bits in the tag. Find the size of main memory.

Solution-

Given-

Set size = 8

Cache memory size = 512 KB

Number of bits in tag = 10 bits

• We consider that the memory is byte addressable.

Let-

Number of bits in set number field = x bits

22

Number of bits in block offset field = y bits

Sum of Number Of Bits Of Set Number Field And Block Offset Field-

We have,

Cache memory size = Number of sets in cache x Number of lines in one set x Line size

Now, substituting the values, we get-

512 KB = 2x x 8 x 2y bytes

 219 bytes = 23+x+y bytes

 19 = 3 +x + y

 x + y = 19 – 3

 x + y = 16

Number of Bits in Physical Address-

Number of bits in physical address

= Number of bits in tag + Number of bits in set number + Number of bits in block offset

= 10 bits + x bits + y bits

= 10 bits + (x + y) bits

= 10 bits + 16 bits = 26 bits

Thus, Number of bits in physical address = 26 bits

Size of Main Memory-

We have,

Number of bits in physical address = 26 bits

Thus, Size of main memory

= 226 bytes = 64 MB

Thus, size of main memory = 64 MB

Problem-05:

Consider a 4-way set associative mapped cache. The size of main memory is 64 MB and there are 10 bits

in the tag. Find the size of cache memory.

Solution-

Given-

Set size = 4

Main memory size = 64 MB

Number of bits in tag = 10 bits

• We consider that the memory is byte addressable.

Number of Bits in Physical Address-

We have,

Size of main memory

= 64 MB

= 226 bytes

Thus, Number of bits in physical address = 26 bits

23

Sum Of Number Of Bits Of Set Number Field And Block Offset Field-

Let-

Number of bits in set number field = x bits

Number of bits in block offset field = y bits

Then, Number of bits in physical address

= Number of bits in tag + Number of bits in set number + Number of bits in block offset

So, we have-

26 bits = 10 bits + x bits + y bits

 26 = 10 + (x + y)

 x + y = 26 – 10

 x + y = 16

Thus, Sum of number of bits of set number field and block offset field = 16 bits

Size of Cache Memory-

Cache memory size

= Number of sets in cache x Number of lines in one set x Line size

= 2x x 4 x 2y bytes

= 22+x+y bytes

= 22+16 bytes

= 218 bytes

= 256 KB

Thus, size of cache memory = 256 KB

Write Through and Write Back in Cache

• Cache is a technique of storing a copy of data temporarily in rapidly accessible storage memory.

Cache stores most recently used words in small memory to increase the speed in which a data is

accessed. It acts like a buffer between RAM and CPU and thus increases the speed in which data is

available to the processor.

• Whenever a Processor wants to write a word, it checks to see if the address it wants to write the data

to, is present in the cache or not. If address is present in the cache i.e., Write Hit.

• We can update the value in the cache and avoid a expensive main memory access. But this results

in Inconsistent Data Problem. As both cache and main memory have different data, it will cause

problem in two or more devices sharing the main memory (as in a multiprocessor system).

This is where Write Through and Write Back Protocol comes into picture.

Write Through:

• In write through, data is simultaneously updated to cache and memory. This process is simpler and

more reliable. This is used when there are no frequent writes to the cache(Number of write operation

is less).

24

• It helps in data recovery (In case of power outage or system failure). A data write will experience

latency (delay) as we have to write to two locations (both Memory and Cache). It Solves the

inconsistency problem. But it questions the advantage of having a cache in write operation (As the

whole point of using a cache was to avoid multiple accessing to the main memory).

Write Back:

• The data is updated only in the cache and updated into the memory in later time. Data is updated in

the memory only when the cache line is ready to replaced (cache line replacement is done using

Belady’s Anomaly, Least Recently Used Algorithm, FIFO, LIFO and others depending on the

application). Write Back is also known as Write Deferred.

25

• Dirty Bit : Each Block in the cache needs a bit to indicate if the data present in the cache was

modified(Dirty) or not modified(Clean).If it is clean there is no need to write it into the memory. It

designed to reduce write operation to a memory. If Cache fails or if System fails or power outage the

modified data will be lost. Because its nearly impossible to restore data from cache if lost.

• If write occurs to a location that is not present in the Cache (Write Miss), we use two options, Write

Allocation and Write Around.

Write Allocation:

• In Write Allocation data is loaded from the memory into cache and then updated. Write allocation

works with both Write back and Write through. But it is generally used with Write Back because it is

unnecessary to bring data from the memory to cache and then updating the data in both cache and

main memory. Thus, Write Through is often used with No write Allocate.

Write Around:

Here data is Directly written/updated to main memory without disturbing cache. It is better to use this when

the data is not immediately used again.

26

Differentiate between Write Through and Write Back Methods

During a read operation, when the CPU determines a word in the cache, the main memory is not included in

the transfer. Thus, there are two ways that the system can proceed when the operation is a write.

1. Write Through Method: The simplest method is to update the main memory with every memory write

operation, when the cache memory is update in parallel when it contains the word at the specified address.

This can be known as the write through method.

2. Write Back Method:

During write operation, only the cache location is updated in the write back method. Then, the location is

marked by a flag so that it is later copied to the main memory when the word is removed from the cache. For

the write back method, the reason is that during the time a word remains in the cache, it can be updated

multiple times. Thus, as long as the word remains in the cache, it does not matter if the copy in the main

cache. This is only when the word is displaced from the cache which needs an exact copy that is rewritten

into main memory.

Differentiate Between Write Through and Write Back Methods:

WRITE THROUGH METHOD WRITE BACK METHOD

In this method main memory is updated with

every memory write operation as well as cache

memory is updated in parallel if it contains the

word at the specified address.

In this method only cache location is updated

during write operation.

Main memory always contains same data as

cache.

Main memory and cache memory may have

different data.

Number of memory write operation in a

typical program is more.

Number of memory write operation in a typical

program is less

When I/O device communicated through

DMA would receive most recent data.

When I/O device communicated through DMA

would not receive most recent data.

It is a process of writing cache and main

memory simultaneously.

It is a process of writing cache and data is removed

from cache, first copied to main memory.

27

Cache Coherence and Synchronization
Cache coherence problem

• An important problem that must be addressed in many parallel systems - any system that allows

multiple processors to access (potentially) multiple copies of data is cache coherence. The existence

of multiple cached copies of data creates the possibility of inconsistency between a cached copy

and the shared memory or between cached copies themselves.

There are three common sources of cache inconsistency:

i. Inconsistency in data sharing:

• In a memory hierarchy for a multiprocessor system data inconsistency may occur between

adjacent levels or within the same level. The cache inconsistency problem occurs only when

multiple private caches are used. Thus, it is, the possible that a wrong data being accessed by one

processor because another processor has changed it, and not all changes have yet been propagated.

Suppose we have two processors, A and B, each of which is dealing with memory word X, and

each of which has a cache. If processor A changes X, then the value seen by processor B in its

own cache will be wrong, even if processor A also changes the value of X in main memory.

• In above example initially, x1 = x2 = X = 5. P1 writes X: =10 using write-through. P2 now reads

X and uses its local copy x2 but finds that X is still 5.

• Thus, P2 does not know that P1 modified X.

• Thus, the cache inconsistency problem occurs when multiple private cache are used and

especially the problem arose by writing the shared variables.

ii. Process migration (even if jobs are independent):

• This problem occurs when a process containing shared variable X migrates from process 1 to

process2 using the write back cache on the right. Thus, another important aspect of coherence is

serialization of writes - that is, if two processors try to write 'simultaneously', then:

(i) the writes happen sequentially (and it doesn't really matter who gets to write

first - provided we have sensible arbitration); and

(ii) all processors see the writes as occurring in the same order. That is, if processors

A and B both write to X, with A writing first, then any other processors (C, D,

E) all see the same thing.

28

iii. DMA I/O:

• This inconsistency problem occurs during the I/O operation that bypass the cache. This problem

is present even in a uniprocessor and can be removed by OS cache flushes).

• In practice, these issues are managed by a memory bus, which by its very nature ensures write

serialization, and also allows us to broadcast invalidation signals (we essentially just put the

memory address to be invalidated on the bus). We can add an extra valid bit to cache tags to mark

then invalid. Typically, we would use a write-back cache because it has much lower memory

bandwidth requirements. Each processor must keep track of which cache blocks are dirty - that

is, that it has written to - again by adding a bit to the cache tag. If it sees a memory access for a

word in a cache block it has marked as dirty, it intervenes and provides the (updated) value. There

are numerous other issues to address when considering cache coherence.

• One approach to maintaining coherence is to recognize that not every location needs to be shared

(and in fact most don't), and simply reserve some space for non-cacheable data such as

semaphores, called a coherency domain.

• Using a fixed area of memory, however, is very restrictive. Restrictions can be reduced by

allowing the MMU to tag segments or pages as non-cacheable. However, that requires the OS,

compiler, and programmer to be involved in specifying data that is to be coherently shared. For

example, it would be necessary to distinguish between the sharing of semaphores and simple data

so that the data can be cached once a processor owns its semaphore, but the semaphore itself

should never be cached.

In order to remove this data inconsistency there are a number of approaches based on hardware and

software techniques few are given below:

• No caches are used which is not a feasible solution

• Make shared-data non-cacheable this is the simplest software solution but produce low

performance if a lot of data is shared

• software flush at strategic times: e.g., after critical sections, this is relatively simple technique but

has low performance if synchronization is not frequent

• hardware cache coherence this can be achieved by making memory and caches coherent

(consistent) with each other, in other words if the memory and other processors see writes then

without intervention of the software

• absolute coherence i.e. all copies of each block have same data at all times

• It is not necessary what is required is appearance of absolute coherence that is done by making

temporary incoherence is OK (e.g., write-back cache)

• In general, a cache coherence protocols consist of the set of possible states in local caches, the

state in shared memory and the state transitions caused by the messages transported through the

interconnection network to keep memory coherent. There are basically two kinds of protocols

depends on how writes are handled.

29

Other protocols used for cache coherence and synchronization:

i. Snooping Cache Protocol (for bus-based machines)

• With a bus interconnection, cache coherence is usually maintained by adopting a "snoopy

protocol", where each cache controller "snoops" on the transactions of the other caches and

guarantees the validity of the cached data. In a (single-) multi-stage network, however, the

unavailability of a system "bus" where transactions are broadcast makes snoopy protocols not

useful. Directory based schemes are used in this case. In case of snooping protocol processors

perform some form of snooping - that is, keeping track of other processor's memory writes. ALL

caches/memories see and react to ALL bus events. The protocol relies on global visibility of

requests (ordered broadcast). This allows the processor to make state transitions for its cache-

blocks.

ii. Write Invalidate protocol

• The states of a cache block copy changes with respect to read, write and replacement operations

in the cache. The most common variant of snooping is a write invalidate protocol.

• Consider a scenario, when processor A writes to X, it broadcasts the fact and all other processors

with a copy of X in their cache mark it invalid. When another processor (B, say) tries to access

X again then there will be a cache miss and either

i. in the case of a write-through cache the value of X will have been updated (actually, it might

not because not enough time may have elapsed for the memory write to complete - but that's

another issue); or

ii. in the case of a write-back cache processor A must spot the read request, and substitute the

correct value for X.

Figure: Write back with cache

Figure: Write through with cache

30

• An alternative (but less-common) approach is write broadcast. This is intuitively a little more

obvious - when a cached value is changed, the processor that changed it broadcasts the new

value to all other processors. They then update their own cached values. The trouble with this

scheme is that it uses up more memory bandwidth. A way to cut this is to observe that many

memory words are not shared - that is, they will only appear in one cache. If we keep track of

which words are shared and which are not, we can reduce the amount of broadcasting necessary.

There are two main reasons why more memory bandwidth is used: in an invalidation scheme,

only the first change to a word requires an invalidation signal to be broadcast, whereas in a write

broadcast scheme all changes must be signaled; and in an invalidation scheme only the first

change to any word in a cache block must be signaled, whereas in a write broadcast scheme

every word that is written must be signaled. On the other hand, in a write broadcast scheme we

do not end up with a cache miss when trying to access a changed word, because the cached copy

will have been updated to the correct value.

Figure: write-back with broadcast if different processors operate on different data items, these can

be cached.

1. Once these items are tagged dirty, all subsequent operations can be performed locally on the cache

without generating external traffic.

2. If a data item is read by number of processors, it transitions to the shared state in the cache and all

subsequent read operations become local.

In both cases, the coherence protocol does not add any overhead.

iii. Directory-based Protocols:

• When a multistage network is used to build a large multiprocessor system, the snoopy cache

protocols must be modified. Since broadcasting is very expensive in a multistage network,

consistency commands are sent only to caches that keep a copy of the block. This leads to

Directory Based protocols.

• A directory is maintained that keeps track of the sharing set of each memory block. Thus, each

bank of main memory can keep a directory of all caches that have copied a particular line (block).

When a processor writes to a location in the block, individual messages are sent to any other

caches that have copies. Thus, the Directory-based protocols selectively send invalidation/update

requests to only those caches having copies—the sharing set leading the network traffic limited

only to essential updates. Proposed schemes differ in the latency with which memory operations

are performed and the implementation cost of maintaining the directory.

• The memory must keep a bit-vector for each line that has one bit per processor, plus a bit to

indicate ownership (in which case there is only one bit set in the processor vector).

Figure: Directory based protocol

31

• These bitmap entries are sometimes referred to as the presence bits. Only processors that hold a

particular block (or are reading it) participate in the state transitions due to coherence operations.

Note that there may be other state transitions triggered by processor read, write, or flush (retiring

a line from cache) but these transitions can be handled locally with the operation reflected in the

presence bits and state in the directory. If different processors operate on distinct data blocks,

these blocks become dirty in the respective caches and all operations after the first one can be

performed locally.

• If multiple processors read (but do not update) a single data block, the data block gets replicated

in the caches in the shared state and subsequent reads can happen without triggering any

coherence overheads.

• Various directory-based protocols differ mainly in how the directory maintains information and

what information is stored. Generally speaking, the directory may be central or distributed.

Contention and long search times are two drawbacks in using a central directory scheme. In a

distributed-directory scheme, the information about memory blocks is distributed. Each

processor in the system can easily "find out" where to go for "directory information" for a

particular memory block.

• Directory-based protocols fall under one of three categories:

i. Full-map directories,

ii. limited directories, and

iii. chained directories.

i. This full-map protocol is extremely expensive in terms of memory as it stores enough data

associated with each block in global memory so that every cache in the system can simultaneously

store a copy of any block of data. It thus defeats the purpose of leaving a bus-based architecture.

ii. A limited-map protocol stores a small number of processor ID tags with each line in main

memory. The assumption here is that only a few processors share data at one time. If there is a

need for more processors to share the data than there are slots provided in the directory, then

broadcast is used instead.

iii. Chained directories have the main memory store a pointer to a linked list that is itself stored in

the caches. Thus, an access that invalidates other copies goes to memory and then traces a chain

of pointers from cache to cache, invalidating along the chain. The actual write operation stalls

until the chain has been traversed. Obviously, this is a slow process.

• Duplicate directories can be expensive to implement, and there is a problem with keeping them

consistent when processor and bus accesses are asynchronous. For a write-through cache,

consistency is not a problem because the cache must go out to the bus anyway, precluding any

other master from colliding with its access. But in a write-back cache, care must be taken to stall

processor cache writes that change the directory while other masters have access to the main

memory.

• On the other hand, if the system includes a secondary cache that is inclusive of the primary cache,

a copy of the directory already exists. Thus, the snooping logic can use the secondary cache

directory to compare with the main memory access, without stalling the processor in the main

cache. If a match is found, then the comparison must be passed up to the primary cache, but the

number of such stalls is greatly reduced due to the filtering action of the secondary cache

comparison.

• A variation on this approach that is used with write-back caches is called dirty inclusion, and

simply requires that when a primary cache line first becomes dirty, the secondary line is similarly

marked. This save writing through the data, and writing status bits on every write cycle, but still

enables the secondary cache to be used by the snooping logic to monitor the main memory

accesses. This is especially important for a read- miss, which must be passed to the primary cache

to be satisfied.

32

• The previous schemes have all relied heavily on broadcast operations, which are easy to

implement on a bus. However, buses are limited in their capacity and thus other structures are

required to support sharing for more than a few processors. These structures may support

broadcast, but even so, broadcast- based protocols are limited.

• The problem is that broadcast is an inherently limited means of communication. It implies a

resource that all processors have access to, which means that either they contend to transmit, or

they saturate on reception, or they have a factor of N hardware for dealing with the N potential

broadcasts.

NOTES:

• Snoopy cache protocols are not appropriate for large-scale systems because of the bandwidth

consumed by the broadcast operations

• In a multistage network, cache coherence is supported by using cache directories to store

information on where copies of cache reside.

• A cache coherence protocol that does not use broadcast must store the locations of all cached

copies of each block of shared data. This list of cached locations whether centralized or

distributed is called a cache directory. A directory entry for each block of data contains number

of pointers to specify the locations of copies of the block.

Distributed directory schemes

• In scalable architectures, memory is physically distributed across processors. The corresponding

presence bits of the blocks are also distributed. Each processor is responsible for maintaining the

coherence of its own memory blocks. Since each memory block has an owner its directory

location is implicitly known to all processors. When a processor attempts to read a block for the

first time, it requests the owner for the block. The owner suitably directs this request based on

presence and state information locally available. When a processor writes into a memory block,

it propagates an invalidate to the owner, which in turn forwards the invalidate to all processors

that have a cached copy of the block. Note that the communication overhead associated with

state update messages is not reduced.

• Distributed directories permit O(p) simultaneous coherence operations, provided the underlying

network can sustain the associated state update messages. From this point of view, distributed

directories are inherently more scalable than snoopy systems or centralized directory systems.

The latency and bandwidth of the network become fundamental performance bottlenecks for

such systems.

33

Paging

Paging is a memory management scheme that eliminates the need for contiguous allocation of physical

memory. This scheme permits the physical address space of a process to be non – contiguous.

• Logical Address or Virtual Address (represented in bits): An address generated by the CPU

• Logical Address Space or Virtual Address Space (represented in words or bytes): The set of

all logical addresses generated by a program

• Physical Address (represented in bits): An address actually available on memory unit

• Physical Address Space (represented in words or bytes): The set of all physical addresses

corresponding to the logical addresses

Example:

• If Logical Address = 31 bit, then Logical Address Space = 231 words = 2 G words (1 G = 230)

• If Logical Address Space = 128 M words = 27 * 220 words, then Logical Address = log2 2
27 =

27 bits

• If Physical Address = 22 bit, then Physical Address Space = 222 words = 4 M words (1 M =

220)

• If Physical Address Space = 16 M words = 24 * 220 words, then Physical Address = log2 2
24 =

24 bits

The mapping from virtual to physical address is done by the memory management unit (MMU) which is a

hardware device, and this mapping is known as paging technique.

• The Physical Address Space is conceptually divided into a number of fixed-size blocks,

called frames.

• The Logical address Space is also splitted into fixed-size blocks, called pages.

• Page Size = Frame Size

Let us consider an example:

• Physical Address = 12 bits, then Physical Address Space = 4 K words

• Logical Address = 13 bits, then Logical Address Space = 8 K words

• Page size = frame size = 1 K words (assumption)

https://media.geeksforgeeks.org/wp-content/uploads/paging.jpg

34

Address generated by CPU is divided into

• Page number(p): Number of bits required to represent the pages in Logical Address Space

or Page number

• Page offset(d): Number of bits required to represent particular word in a page or page size of

Logical Address Space or word number of a page or page offset.

Physical Address is divided into

• Frame number(f): Number of bits required to represent the frame of Physical Address Space

or Frame number.

• Frame offset(d): Number of bits required to represent particular word in a frame or frame

size of Physical Address Space or word number of a frame or frame offset.

The hardware implementation of page table can be done by using dedicated registers. But the usage of

register for the page table is satisfactory only if page table is small. If page table contain large number of

entries then we can use TLB (translation Look-aside buffer), a special, small, fast look up hardware cache.

• The TLB is associative, high speed memory.

• Each entry in TLB consists of two parts: a tag and a value.

• When this memory is used, then an item is compared with all tags simultaneously. If the item

is found, then corresponding value is returned.

 Main memory access time = m

If page table are kept in main memory,

Effective access time = m (for page table) + m (for particular page in page table)

https://media.geeksforgeeks.org/wp-content/uploads/paging-3.jpg

35

virtual memory
• Virtual memory is a memory management technique where secondary memory can be used as if it

were a part of the main memory. Virtual memory is a very common technique used in the operating

systems (OS) of computers.

• Virtual memory uses hardware and software to allow a computer to compensate for physical

memory shortages, by temporarily transferring data from random access memory (RAM) to disk

storage. In essence, virtual memory allows a computer to treat secondary memory as though it were

the main memory.

• Today, most PCs come with up to around 4 GB of RAM. However, sometimes this isn't enough to

run all the programs a user might want to use at once. This is where virtual memory comes in.

• Virtual memory can be used to swap data that has not been used recently and move it over to a

storage device like a hard drive or solid-state drive (SDD). This will free up more space on the

RAM.

• Virtual memory is important for improving system performance, multitasking, using large programs

and flexibility. However, users shouldn't rely on virtual memory too much, because using virtual

data is considerably slower than the use of RAM. If the OS has to swap data between virtual memory

and RAM too often, it can make the computer feel very slow, this is called thrashing.

• Virtual memory was developed at a time when physical memory, also referenced as RAM, was

expensive. Computers have a finite amount of RAM, so memory can run out, especially when

multiple programs run at the same time. A system using virtual memory uses a section of the hard

drive to emulate RAM. With virtual memory, a system can load larger programs or multiple

programs running at the same time, allowing each one to operate as if it has infinite memory and

without having to purchase more RAM.

How virtual memory works?

• Virtual memory uses both computer hardware and software to work. When an application is in use,

data from that program is stored in a physical address using RAM. More specifically, virtual

memory will map that address to RAM using a memory management unit (MMU). The OS will

make and manage memory mappings by using page tables and other data structures. The MMU,

which acts as an address translation hardware, will automatically translate the addresses.

• If at any point later the RAM space is needed for something more urgent, the data can be swapped

out of RAM and into virtual memory. The computer's memory manager is in charge of keeping

track of the shifts between physical and virtual memory. If that data is needed again, a context

switch can be used to resume execution again.

• While copying virtual memory into physical memory, the OS divides memory into page-files

or swap-files with a fixed number of addresses. Each page is stored on a disk, and when the page is

needed, the OS copies it from the disk to main memory and translates the virtual addresses into real

addresses.

• However, the process of swapping virtual memory to physical is rather slow. This means that using

virtual memory generally causes a noticeable reduction in performance. Because of swapping,

computers with more RAM are seen to have better performance.

https://searchstorage.techtarget.com/definition/RAM-random-access-memory
https://searchstorage.techtarget.com/definition/SSD-solid-state-drive
https://searchservervirtualization.techtarget.com/feature/Memory-management-techniques-you-should-remember
https://whatis.techtarget.com/definition/thrashing
https://whatis.techtarget.com/definition/memory-management-unit-MMU
https://whatis.techtarget.com/definition/context-switch
https://whatis.techtarget.com/definition/context-switch

36

Types of virtual memory:

• A computer's MMU handles memory operations, including managing virtual memory. In most

computers, the MMU hardware is integrated into the CPU. There are two ways in which virtual

memory is handled: paged and segmented.

• Paging divides memory into sections or paging files, usually approximately 4 KB in size. When a

computer uses up its RAM, pages not in use are transferred to the section of the hard drive

designated for virtual memory using a swap file. A swap file is a space set aside on the hard drive

as the virtual memory extensions of the computer's RAM. When the swap file is needed, it's sent

back to RAM using a process called page swapping. This system ensures that the computer's OS

and applications don't run out of real memory.

i. paging without virtual memory.

• The paging process includes the use of page tables, which translate the virtual addresses that the OS

and applications use into the physical addresses that the MMU uses. Entries in the page table

indicate whether the page is in real memory. If the OS or a program doesn't find what it needs in

RAM, then the MMU responds to the missing memory reference with a page fault exception to get

the OS to move the page back to memory when it's needed. Once the page is in RAM, its virtual

address appears in the page table.

• Segmentation is also used to manage virtual memory. This approach divides virtual memory into

segments of different lengths. Segments not in use in memory can be moved to virtual memory

space on the hard drive. Segmented information or processes are tracked in a segment table, which

shows if a segment is present in memory, whether it's been modified and what its physical address

is. In addition, file systems in segmentation are only made up of a list of segments mapped into a

process's potential address space.

ii. virtual memory with segmentation.

• Segmentation and paging differ as a memory model in terms of how memory is divided; however,

it can also be combined. Some virtual memory systems combine segmentation and paging. In this

case, memory gets divided into frames or pages. The segments take up multiple pages, and the

virtual address includes both the segment number and the page number.

How to manage virtual memory?

• Operating systems have default settings that determine the amount of hard drive space to allocate

for virtual memory. That setting will work for most applications and processes, but there may be

times when it's necessary to manually reset the amount of hard drive space allocated to virtual

memory, such as with applications that depend on fast response times or when the computer has

multiple HDDs.

• When manually resetting virtual memory, the minimum and maximum amount of hard drive space

to be used for virtual memory must be specified. Allocating too little HDD space for virtual memory

can result in a computer running out of RAM. If a system continually needs more virtual memory

space, it may be wise to consider adding RAM. Common operating systems may generally

recommend users not increasing virtual memory beyond 1.5 times the amount of RAM.

• Managing virtual memory may be a different experience on different types of operating systems,

however. And IT professionals should understand the basics when it comes to managing physical

memory, virtual memory and virtual addresses. For example, here are some tips on managing

virtual memory on the Windows 10 operating system.

https://searchservervirtualization.techtarget.com/tip/Virtual-memory-management-techniques-A-beginners-guide
https://whatis.techtarget.com/definition/processor
https://searchservervirtualization.techtarget.com/definition/memory-paging
https://whatis.techtarget.com/definition/segmented-memory
https://searchstorage.techtarget.com/definition/hard-disk-drive
https://searchenterprisedesktop.techtarget.com/tip/Understand-and-manage-Windows-10-virtual-memory
https://searchenterprisedesktop.techtarget.com/tip/Understand-and-manage-Windows-10-virtual-memory

37

Benefits of using virtual memory

Benefits of virtual memory include:

• its ability to handle twice as many addresses as main memory;

• frees applications from managing shared memoryand saves users from having to add memory

modules when RAM space runs out;

• increased security because of memory isolation;

• multiple larger applications can be run simultaneously;

• allocating memory is relatively cheap;

• doesn't need external fragmentation;

• effective CPU use;

• data can be moved automatically; and

• pages in the original process can be shared during a fork system call.

Figure: The memory hierarchy of a computer considering primary and secondary storage.

• In addition, in a virtualized computing environment, administrators can use virtual memory

management techniques to allocate additional memory to a virtual machine (VM) that has run out

of resources. Such virtualization management tactics can improve VM performance and

management flexibility.

Limitations

• The use of virtual memory has its tradeoffs, particularly with speed. It's generally better to have as

much physical memory as possible, so programs work directly from RAM or physical memory.

• The use of virtual memory slows a computer because data must be mapped between virtual and

physical memory, which requires extra hardware support for address translations.

https://whatis.techtarget.com/definition/shared-memory
https://searchservervirtualization.techtarget.com/definition/virtual-machine
https://searchservervirtualization.techtarget.com/definition/virtualization

38

• The size of virtual storage is limited by the amount of secondary storage, as well as the addressing

scheme with the computer system.

• Thrashing can happen if the amount of RAM is too small, which will make the computer perform

slower.

• It may take time to switch between applications using virtual memory.

Virtual memory vs. physical memory

• When talking about the differences between virtual and physical memory, the biggest distinction is

normally seen to be in speed. RAM is considerably faster than virtual memory. RAM, however,

tends to be more expensive than virtual memory.

• When a computer requires storage, RAM is the first used. Virtual memory is used when the RAM

is filled, because it's slower.

• Users can actively add RAM to a computer by buying and installing more RAM chips if they are

experiencing slowdowns due to memory swaps happening too often. The amount of RAM depends

on what's installed on a computer. Virtual memory, on the other hand, is limited by the size of the

computer's hard drive. Virtual memory settings can often be controlled through the operating

system.

History

• Before virtual memory was developed, computers had RAM and secondary memory. Early

computers used magnetic core memory for main memory and magnetic drums for their secondary

memory. Computer memory was expensive and usually in short supply back in the 1940s and 1950s.

As computer programs grew in size and complexity, developers had to worry that their programs

would use up all of a computer's main memory and run out of memory.

• In those early days, programmers used a process called overlaying to run programs that were larger

than available memory. Parts of a program that weren't continually in use were set up as overlays

that, when needed, would overwrite the existing overlay in memory. It required extensive

programming to make overlaying work, and that was a key impetus for the development of

automated virtual memory.

• German physicist Fritz-Rudolf Güntsch has been credited with developing the concept of virtual

memory in 1956, though this point is contested. Güntsch did, however, end up describing a form of

cache memory.

• The first apparent real instance of a virtual memory system came from the University of Manchester,

in their attempt to develop a one-level storage system for the Atlas computer. The system used

paging to map virtual addresses to a programmer on to the primary memory. Atlas was developed

in 1959 and later commissioned in 1962.

• In 1961, the first commercial computer with virtual memory was released by the Burroughs

Corporation. This version of virtual memory used segmentation as opposed to paging.

• In 1969, IBM researchers demonstrated that virtual memory overlay systems worked better than the

earlier manual systems. Up until this point, there was still a debate over this. Mainframes

and minicomputers in the 1970s generally used virtual memory. Virtual memory technology was

not included in early personal computers because developers thought running out of memory would

not be a problem in those machines. That assumption proved incorrect. Intel introduced virtual

memory in the protected mode of the 80286 processor in 1982, and paging support when the 80386

came out in 1985.

https://search400.techtarget.com/definition/minicomputer
https://whatis.techtarget.com/definition/Intel-80286

39

Operating System - Virtual Memory

A computer can address more memory than the amount physically installed on the system. This extra

memory is actually called virtual memory and it is a section of a hard disk that's set up to emulate the

computer's RAM.

The main visible advantage of this scheme is that programs can be larger than physical memory. Virtual

memory serves two purposes. First, it allows us to extend the use of physical memory by using disk.

Second, it allows us to have memory protection, because each virtual address is translated to a physical

address.

Following are the situations, when entire program is not required to be loaded fully in main memory.

• User written error handling routines are used only when an error occurred in the data or

computation.

• Certain options and features of a program may be used rarely.

• Many tables are assigned a fixed amount of address space even though only a small amount of the

table is actually used.

• The ability to execute a program that is only partially in memory would counter many benefits.

• Less number of I/O would be needed to load or swap each user program into memory.

• A program would no longer be constrained by the amount of physical memory that is available.

• Each user program could take less physical memory, more programs could be run the same time,

with a corresponding increase in CPU utilization and throughput.

Modern microprocessors intended for general-purpose use, a memory management unit, or MMU, is built

into the hardware. The MMU's job is to translate virtual addresses into physical addresses. A basic example

is given below −

Virtual memory is commonly implemented by demand paging. It can also be implemented in a

segmentation system. Demand segmentation can also be used to provide virtual memory.

40

Demand Paging

A demand paging system is quite similar to a paging system with swapping where processes reside in

secondary memory and pages are loaded only on demand, not in advance. When a context switch occurs,

the operating system does not copy any of the old program’s pages out to the disk or any of the new

program’s pages into the main memory Instead, it just begins executing the new program after loading the

first page and fetches that program’s pages as they are referenced.

While executing a program, if the program references a page which is not available in the main memory

because it was swapped out a little ago, the processor treats this invalid memory reference as a page

fault and transfers control from the program to the operating system to demand the page back into the

memory.

Advantages

• Large virtual memory.

• More efficient use of memory.

• There is no limit on degree of multiprogramming.

Disadvantages

• Number of tables and the amount of processor overhead for handling page interrupts are greater

than in the case of the simple paged management techniques.

Page Replacement-

• Page replacement is a process of swapping out an existing page from the frame of a main memory

and replacing it with the required page.

• Page replacement is required when-

• All the frames of main memory are already occupied.

• Thus, a page has to be replaced to create a room for the required page.

41

Page Replacement Algorithms-

• Page replacement algorithms help to decide which page must be swapped out from the main

memory to create a room for the incoming page.

• Page replacement algorithms are the techniques using which an Operating System decides which

memory pages to swap out, write to disk when a page of memory needs to be allocated. Paging

happens whenever a page fault occurs and a free page cannot be used for allocation purpose

accounting to reason that pages are not available or the number of free pages is lower than required

pages.

• When the page that was selected for replacement and was paged out, is referenced again, it has to

read in from disk, and this requires for I/O completion. This process determines the quality of the

page replacement algorithm: the lesser the time waiting for page-ins, the better is the algorithm.

• A page replacement algorithm looks at the limited information about accessing the pages provided

by hardware, and tries to select which pages should be replaced to minimize the total number of

page misses, while balancing it with the costs of primary storage and processor time of the

algorithm itself. There are many different page replacement algorithms. We evaluate an algorithm

by running it on a particular string of memory reference and computing the number of page faults.

Various page replacement algorithms are-

• FIFO Page Replacement Algorithm

• LRU Page Replacement Algorithm

• Optimal Page Replacement Algorithm

NOTE: A good page replacement algorithm is one that minimizes the number of page faults.

Reference String

The string of memory references is called reference string. Reference strings are generated artificially or

by tracing a given system and recording the address of each memory reference. The latter choice produces

a large number of data, where we note two things.

• For a given page size, we need to consider only the page number, not the entire address.

• If we have a reference to a page p, then any immediately following references to page p will never

cause a page fault. Page p will be in memory after the first reference; the immediately following

references will not fault.

• For example, consider the following sequence of addresses − 123,215,600,1234,76,96

• If page size is 100, then the reference string is 1,2,6,12,0,0

i. First In First Out (FIFO) algorithm

• As the name suggests, this algorithm works on the principle of “First in First out“.

• It replaces the oldest page that has been present in the main memory for the longest time.

• It is implemented by keeping track of all the pages in a queue.

42

ii. Optimal Page replacement algorithm

• An optimal page-replacement algorithm has the lowest page-fault rate of all algorithms. An optimal

page-replacement algorithm exists, and has been called OPT or MIN.

• This algorithm replaces the page that will not be referred by the CPU in future for the longest

time.

• It is practically impossible to implement this algorithm.

• This is because the pages that will not be used in future for the longest time cannot be predicted.

• However, it is the best-known algorithm and gives the least number of page faults.

• Hence, it is used as a performance measure criterion for other algorithms.

iii. Least Recently Used (LRU) algorithm

• Page which has not been used for the longest time in main memory is the one which will be selected

for replacement.

• Easy to implement, keep a list, replace pages by looking back into time.

Numerical on Optimal, LRU and FIFO

Q. Consider a reference string: 4, 7, 6, 1, 7, 6, 1, 2, 7, 2. the number of frames in the memory is 3. Find

out the number of page faults respective to:

• Optimal Page Replacement Algorithm

• FIFO Page Replacement Algorithm

• LRU Page Replacement Algorithm

43

Optimal Page Replacement Algorithm

Number of Page Faults in Optimal Page Replacement Algorithm = 5

LRU Page Replacement Algorithm

Number of Page Faults in LRU = 6

FIFO Page Replacement Algorithm

Number of Page Faults in FIFO = 6

Page Fault in OS-

• A page fault occurs when a page referenced by the CPU is not found in the main memory.

• The required page has to be brought from the secondary memory into the main memory.

• A page has to be replaced if all the frames of main memory are already occupied.

44

Problem-01:

A system uses 3 page frames for storing process pages in main memory. It uses the First in First out

(FIFO) page replacement policy. Assume that all the page frames are initially empty. What is the total

number of page faults that will occur while processing the page reference string given below-

4 , 7, 6, 1, 7, 6, 1, 2, 7, 2

Also calculate the hit ratio and miss ratio.

Solution-

Total number of references = 10

From here,

Total number of page faults occurred = 6

Calculating Hit ratio-

Total number of page hits

= Total number of references – Total number of page misses or page faults

= 10 – 6 = 4

Thus, Hit ratio

= Total number of page hits / Total number of references

= 4 / 10 = 0.4 or 40%

Calculating Miss ratio-

Total number of page misses or page faults = 6

Thus, Miss ratio

= Total number of page misses / Total number of references

= 6 / 10 = 0.6 or 60%

Alternatively,

Miss ratio = 1 – Hit ratio

= 1 – 0.4 = 0.6 or 60%

Problem-02:

A system uses 3 page frames for storing process pages in main memory. It uses the Least Recently Used

(LRU) page replacement policy. Assume that all the page frames are initially empty. What is the total

number of page faults that will occur while processing the page reference string given below-

4, 7, 6, 1, 7, 6, 1, 2, 7, 2

Also calculate the hit ratio and miss ratio.

Solution-

Total number of references = 10

45

From here,

Total number of page faults occurred = 6

Calculating Miss ratio-

Hit ratio = Total number of page hits / Total number of references

= (Total number of references-number of page fault) / Total number of references

= 4 / 10 = 0.4 or 40%

Calculating Miss ratio-

Total number of page misses or page faults = 6

Thus, Miss ratio

= Total number of page misses / Total number of references

= 6 / 10 = 0.6 or 60%

Problem-03:

A system uses 3 page frames for storing process pages in main memory. It uses the Optimal page

replacement policy. Assume that all the page frames are initially empty. What is the total number of page

faults that will occur while processing the page reference string given below-

4 , 7, 6, 1, 7, 6, 1, 2, 7, 2

Also calculate the hit ratio and miss ratio.

Solution-

Total number of references = 10

From here,

Total number of page faults occurred = 5

In the similar manner as above-

Hit ratio = 0.5 or 50%

Miss ratio = 0.5 or 50%

46

Computer Architecture: Input/Output Organisation

Input/Output Subsystem

• I/O devices are very important in the computer systems. They provide users the means of interacting

with the system. So, there is a separate I/O system devoted to handling the I/O devices.

The different Components of the I/O systems are −

I/O Hardware

• There are many I/O devices handled by the operating system such as mouse, keyboard, disk drive

etc. There are different device drivers that can be connected to the operating system to handle a

specific device. The device controller is an interface between the device and the device driver.

A diagram to represent this is −

I/O Application Interface

• The user applications can access all the I/O devices using the device drivers, which are device

specific codes. The application layer sees a common interface for all the devices.

This is illustrated using the below image −

Most of the devices are either block I/O and character I/O devices. Block devices are accessed one block at

a time whereas character devices are accessed one character at a time.

47

I/O Software

• The I/O software contains the user level libraries and the kernel modules. The libraries provide the

interface to the user program to perform input and output. The kernel modules provide the device

drivers that interact with the device controllers.

• The I/O software should be device independent so that the programs can be used for any I/O device

without specifying it in advance. For example - A program that reads a file should be able the read

the file on a hard disk, floppy disk, CD-ROM etc. without having to change the program each time.

The I/O subsystem of a computer provides an efficient mode of communication between the central system

and the outside environment. It handles all the input-output operations of the computer system.

Peripheral Devices

Input or output devices that are connected to computer are called peripheral devices. These devices are

designed to read information into or out of the memory unit upon command from the CPU and are

considered to be the part of computer system. These devices are also called peripherals.

For example: Keyboards, display units and printers are common peripheral devices.

There are three types of peripherals:

• Input peripherals: Allows user input, from the outside world to the computer.

Example: Keyboard, Mouse etc.

• Output peripherals: Allows information output, from the computer to the outside world.

Example: Printer, Monitor etc.

• Input-Output peripherals: Allows both input (from outside world to computer) as well as,

output (from computer to the outside world).

Example: Touch screen etc.

Interfaces

Interface is a shared boundary between two separate components of the computer system which can be used

to attach two or more components to the system for communication purposes.

There are two types of interface:

1. CPU Interface

2. I/O Interface

Input-Output Interface
• Peripherals connected to a computer need special communication links for interfacing with CPU.

In computer system, there are special hardware components between the CPU and peripherals to

control or manage the input-output transfers. These components are called input-output interface

units because they provide communication links between processor bus and peripherals. They

provide a method for transferring information between internal system and input-output devices.

Modes of I/O Data Transfer

• Data transfer between the central unit and I/O devices can be handled in generally three types of

modes which are given below:

o Programmed I/O

o Interrupt Initiated I/O

o Direct Memory Access

48

i. Programmed I/O

• Programmed I/O instructions are the result of I/O instructions written in computer program. Each

data item transfer is initiated by the instruction in the program.

• Usually the program controls data transfer to and from CPU and peripheral. Transferring data under

programmed I/O requires constant monitoring of the peripherals by the CPU.

ii. Interrupt Initiated I/O

• In the programmed I/O method the CPU stays in the program loop until the I/O unit indicates that

it is ready for data transfer. This is time consuming process because it keeps the processor busy

needlessly.

• This problem can be overcome by using interrupt initiated I/O. In this when the interface

determines that the peripheral is ready for data transfer, it generates an interrupt. After receiving the

interrupt signal, the CPU stops the task which it is processing and service the I/O transfer and then

returns back to its previous processing task.

iii. Direct Memory Access

• Removing the CPU from the path and letting the peripheral device manage the memory buses

directly would improve the speed of transfer. This technique is known as DMA.

• In this, the interface transfer data to and from the memory through memory bus. A DMA controller

manages to transfer data between peripherals and memory unit.

• Many hardware systems use DMA such as disk drive controllers, graphic cards, network cards and

sound cards etc. It is also used for intra chip data transfer in multicore processors. In DMA, CPU

would initiate the transfer, do other operations while the transfer is in progress and receive an

interrupt from the DMA controller when the transfer has been completed.

Figure: Block diagram of DMA

