
 

 

Binary search Algorithm 

 
Class Search algorithm 

Data structure Array 

Worst case performance O(log n) 

Best case performance O(1) 

Average case performance O(log n) 

Worst case space complexity O(1) 

 

Given a sorted array arr[] of n elements, write a function to search a given element x in arr[]. 

A simple approach is to do linear search. The time complexity of above algorithm is O(n). Another approach to 

perform the same task is using Binary Search. 

 

Binary Search: Search a sorted array by repeatedly dividing the search interval in half. Begin with an interval 

covering the whole array. If the value of the search key is less than the item in the middle of the interval, narrow the 

interval to the lower half. Otherwise narrow it to the upper half. Repeatedly check until the value is found or the 

interval is empty. 

 

Example : 

 

 

The idea of binary search is to use the information that the array is sorted and reduce the time complexity to O(Log 

n). 

 

We basically ignore half of the elements just after one comparison. 

1. Compare x with the middle element. 

2. If x matches with middle element, we return the mid index. 

3. Else If x is greater than the mid element, then x can only lie in right half subarray after the mid element. So 

we recur for right half. 

4. Else (x is smaller) recur for the left half. 

Recursive implementation of Binary Search 

# Python Program for recursive binary search.  

 

# Returns index of x in arr if present, else -1  

def binarySearch (arr, l, r, x):  



 

 

 

 # Check base case  

 if r >= l:  

 

  mid = l + (r - l)/2 

 

  # If element is present at the middle itself  

  if arr[mid] == x:  

   return mid  

   

  # If element is smaller than mid, then it  

  # can only be present in left subarray  

  elif arr[mid] > x:  

   return binarySearch(arr, l, mid-1, x)  

 

  # Else the element can only be present  

  # in right subarray  

  else:  

   return binarySearch(arr, mid + 1, r, x)  

 

 else:  

  # Element is not present in the array  

  return -1 

 

# Test array  

arr = [ 2, 3, 4, 10, 40 ]  

x = 10 

 

# Function call  

result = binarySearch(arr, 0, len(arr)-1, x)  

 

if result != -1:  

 print "Element is present at index % d" % result  

else:  

 print "Element is not present in array" 

 

// C program to implement recursive Binary Search  

#include <stdio.h>  

 

// A recursive binary search function. It returns  

// location of x in given array arr[l..r] is present,  

// otherwise -1  

int binarySearch(int arr[], int l, int r, int x)  

{  

 if (r >= l) {  

  int mid = l + (r - l) / 2;  

 

  // If the element is present at the middle  

  // itself  

  if (arr[mid] == x)  

   return mid;  

 

  // If element is smaller than mid, then  

  // it can only be present in left subarray  

  if (arr[mid] > x)  



 

 

   return binarySearch(arr, l, mid - 1, x);  

 

  // Else the element can only be present  

  // in right subarray  

  return binarySearch(arr, mid + 1, r, x);  

 }  

 

 // We reach here when element is not  

 // present in array  

 return -1;  

}  

 

int main(void)  

{  

 int arr[] = { 2, 3, 4, 10, 40 };  

 int n = sizeof(arr) / sizeof(arr[0]);  

 int x = 10;  

 int result = binarySearch(arr, 0, n - 1, x);  

 (result == -1) ? printf("Element is not present in array") : printf("Element is present at index %d", result);  

 return 0;  

} 

Iterative implementation of Binary Search 
# Python code to implement iterative Binary  

# Search.  

 

# It returns location of x in given array arr  

# if present, else returns -1  

def binarySearch(arr, l, r, x):  

 

 while l <= r:  

 

  mid = l + (r - l)/2;  

   

  # Check if x is present at mid  

  if arr[mid] == x:  

   return mid  

 

  # If x is greater, ignore left half  

  elif arr[mid] < x:  

   l = mid + 1 

 

  # If x is smaller, ignore right half  

  else:  

   r = mid - 1 

  

 # If we reach here, then the element  

 # was not present  

 return -1 

 

 

# Test array  

arr = [ 2, 3, 4, 10, 40 ]  

x = 10 

 

# Function call  



 

 

result = binarySearch(arr, 0, len(arr)-1, x)

if result != -1:  

 print "Element is present at index % d" % result 

else:  

 print "Element is not present in array"

 

// C program to implement iterative Binary Search 

#include <stdio.h>  

// A iterative binary search function. It returns 

// location of x in given array arr[l..r] if present, 

// otherwise -1  

int binarySearch(int arr[], int l, int r, int x) 

{  

 while (l <= r) {  

  int m = l + (r - l) / 2;  

 

  // Check if x is present at mid 

  if (arr[m] == x)  

   return m;  

 // not present  

 return -1;  

}  

 

int main(void)  

{  

 int arr[] = { 2, 3, 4, 10, 40 };  

 int n = sizeof(arr) / sizeof(arr[0]); 

 int x = 10;  

 int result = binarySearch(arr, 0, n 

 (result == -1) ? printf("Element is not presen

 return 0;  

} 

The above recurrence can be solved either using Recurrence T ree method or Master method. It falls in case II of 

Master Method and solution of the recurrence is

Auxiliary Space: O(1) in case of iterative implementation. In case of recursive implementation, O(Logn) recursion call 

stack space. 

 

Binary Tree Data Structure
A tree whose elements have at most 2 children is called a binary tree. Since

only 2 children, we typically name them the left and right child.

 

1, x) 

print "Element is present at index % d" % result  

print "Element is not present in array" 

// C program to implement iterative Binary Search  

// A iterative binary search function. It returns  

// location of x in given array arr[l..r] if present,  

int binarySearch(int arr[], int l, int r, int x)  

s present at mid  

int n = sizeof(arr) / sizeof(arr[0]);  

int result = binarySearch(arr, 0, n - 1, x);  

? printf("Element is not present in array") : printf("Element is present at index %d", result); 

The above recurrence can be solved either using Recurrence T ree method or Master method. It falls in case II of 

he recurrence is . 

O(1) in case of iterative implementation. In case of recursive implementation, O(Logn) recursion call 

Binary Tree Data Structure 
A tree whose elements have at most 2 children is called a binary tree. Since each element in a binary tree can have 

only 2 children, we typically name them the left and right child. 

 

in array") : printf("Element is present at index %d", result);  

The above recurrence can be solved either using Recurrence T ree method or Master method. It falls in case II of 

O(1) in case of iterative implementation. In case of recursive implementation, O(Logn) recursion call 

each element in a binary tree can have 



 

 

A Binary Tree node contains following parts. 

1. Data 

2. Pointer to left child 

3. Pointer to right child 

 

Why Trees? 

1. One reason to use trees might be because you want to store information that naturally forms a hierarchy. For 

example, the file system on a computer: 

2. Trees (with some ordering e.g., BST) provide moderate access/search (quicker than Linked List and slower than 

arrays). 

3. Trees provide moderate insertion/deletion (quicker than Arrays and slower than Unordered Linked Lists). 

4. Like Linked Lists and unlike Arrays, Trees don’t have an upper limit on number of nodes as nodes are linked using 

pointers. 

Main applications of trees include: 

1. Manipulate hierarchical data. 

2. Make information easy to search (see tree traversal). 

3. Manipulate sorted lists of data. 

4. As a workflow for compositing digital images for visual effects. 

5. Router algorithms 

6. Form of a multi-stage decision-making (see business chess). 

 

1) The maximum number of nodes at level ‘l’ of a binary tree is 2
l-1

. 

Here level is number of nodes on path from root to the node (including root and node). Level of root is 1. 

This can be proved by induction. 

For root, l = 1, number of nodes = 2
1-1

 = 1 

Assume that maximum number of nodes on level l is 2
l-1

 

Since in Binary tree every node has at most 2 children, next level would have twice nodes, i.e. 2 * 2
l-1

 

  

2) Maximum number of nodes in a binary tree of height ‘h’ is 2
h
 – 1. 

Here height of a tree is maximum number of nodes on root to leaf path. Height of a tree with single node is 

considered as 1. 

This result can be derived from point 2 above. A tree has maximum nodes if all levels have maximum nodes. So 

maximum number of nodes in a binary tree of height h is 1 + 2 + 4 + .. + 2
h-1

. This is a simple geometric series with h 

terms and sum of this series is 2
h
 – 1. 

In some books, height of the root is considered as 0. In this convention, the above formula becomes 2
h+1

 – 1 

  

3) In a Binary Tree with N nodes, minimum possible height or minimum number of levels is  ? Log2(N+1) ?   

This can be directly derived from point 2 above. If we consider the convention where height of a leaf node is 

considered as 0, then above formula for minimum possible height becomes   ? Log2(N+1) ? – 1 

  

4) A Binary Tree with L leaves has at least   ? Log2L ? + 1   levels 

A Binary tree has maximum number of leaves (and minimum number of levels) when all levels are fully filled. Let all 

leaves be at level l, then below is true for number of leaves L. 

 

5) In Binary tree where every node has 0 or 2 children, number of leaf nodes is always one more than nodes with 

two children. 

L = T + 1 

Where L = Number of leaf nodes 

      T = Number of internal nodes with two children 

 

Full Binary Tree A Binary Tree is full if every node has 0 or 2 children. Following are examples of a full binary tree. 

We can also say a full binary tree is a binary tree in which all nodes except leaves have two children. 
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                 100   40 

n a Full Binary, number of leaf nodes is number of internal nodes plus 1 

       L = I + 1 

Where L = Number of leaf nodes, I = Number of internal nodes 

 

Complete Binary Tree: A Binary Tree is complete Binary Tree if all levels are completely filled except possibly the last 

level and the last level has all keys as left as possible 

Following are examples of Complete Binary Trees 
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Perfect Binary Tree A Binary tree is Perfect Binary Tree in which all internal nodes have two children and all leaves 

are at the same level. 

Following are examples of Perfect Binary Trees. 
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A Perfect Binary Tree of height h (where height is the number of nodes on the path from the root to leaf) has 2
h
 – 1 

node. 

Example of a Perfect binary tree is ancestors in the family. Keep a person at root, parents as children, parents of 

parents as their children. 

 

Balanced Binary Tree 

A binary tree is balanced if the height of the tree is O(Log n) where n is the number of nodes. For Example, AVL tree 

maintains O(Log n) height by making sure that the difference between heights of left and right subtrees is atmost 1. 

Red-Black trees maintain O(Log n) height by making sure that the number of Black nodes on every root to leaf paths 

are same and there are no adjacent red nodes. Balanced Binary Search trees are performance wise good as they 

provide O(log n) time for search, insert and delete. 

 

 

A degenerate (or pathological) tree A Tree where every internal node has one child. Such trees are performance-

wise same as linked list. 
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Insertion in a Binary Tree in level order 
Given a binary tree and a key, insert the key into the binary tree at first position available in level order. 



 

 

 

The idea is to do iterative level order traversal of the given tree using

empty, we make new key as left child of the node. Else if we find a n

key as right child. We keep traversing the tree until we find a node whose either left or right is empty.

 

Deletion in a Binary Tree 
Given a binary tree, delete a node from it by making sure that tree shrinks fro

replaced by bottom most and rightmost node). This different from

among elements, so we replace with last element.

Examples : 

 

Delete 10 in below tree 

       10 

     /    \          

    20     30 

Output :     

       30 

     /              

    20      

 

Delete 20 in below tree 

       10 

     /    \          

    20     30 

            \ 

            40 

Output :     

       10 

     /   \              

    40    30    

Algorithm 

1. Starting at root, find the deepest and rightmost node in binary tree and node which we want to delete.

The idea is to do iterative level order traversal of the given tree using queue. If we find a node whose left child is 

empty, we make new key as left child of the node. Else if we find a node whose right child is empty, we make new 

key as right child. We keep traversing the tree until we find a node whose either left or right is empty.

Given a binary tree, delete a node from it by making sure that tree shrinks from the bottom (i.e. the deleted node is 

replaced by bottom most and rightmost node). This different from BST deletion. Here we do not have any order 

ith last element. 

Starting at root, find the deepest and rightmost node in binary tree and node which we want to delete.

 

. If we find a node whose left child is 

ode whose right child is empty, we make new 

key as right child. We keep traversing the tree until we find a node whose either left or right is empty. 

m the bottom (i.e. the deleted node is 

. Here we do not have any order 

Starting at root, find the deepest and rightmost node in binary tree and node which we want to delete. 



 

 

2. Replace the deepest rightmost node’s data with node to be deleted.

3. Then delete the deepest rightmost node.

 

 

 

BFS vs DFS for Binary Tree 

What are BFS and DFS for Binary Tree? 

A Tree is typically traversed in two ways:

• Breadth First Traversal (Or Level Order Traversal)

• Depth First Traversals 

• Inorder Traversal (Left-Root

• Preorder Traversal (Root

• Postorder Traversal (Left

 

 

BFS and DFSs of above Tree 

 

Breadth First Traversal : 1 2 3 4 5

Depth First Traversals: 

      Preorder Traversal : 1 2 4 5 3 

      Inorder Traversal  :  4 2 5 1 3 

      Postorder Traversal : 4 5 2 3 1

 

Breadth First Traversal 
Algorithm: 

There are basically two functions in this method. One is to print all nodes at a given level (printGivenLevel), and 

other is to print level order traversal of the tree (printLevelorder). printLe

print nodes at all levels one by one starting from root.

 

/*Function to print level order traversal of tree*/

printLevelorder(tree) 

Replace the deepest rightmost node’s data with node to be deleted. 

lete the deepest rightmost node. 

 

A Tree is typically traversed in two ways: 

Breadth First Traversal (Or Level Order Traversal) 

Root-Right) 

Preorder Traversal (Root-Left-Right) 

Postorder Traversal (Left-Right-Root) 

 

Breadth First Traversal : 1 2 3 4 5 

Preorder Traversal : 1 2 4 5 3  

Inorder Traversal  :  4 2 5 1 3  

der Traversal : 4 5 2 3 1 

There are basically two functions in this method. One is to print all nodes at a given level (printGivenLevel), and 

other is to print level order traversal of the tree (printLevelorder). printLevelorder makes use of printGivenLevel to 

print nodes at all levels one by one starting from root. 

/*Function to print level order traversal of tree*/ 

 

There are basically two functions in this method. One is to print all nodes at a given level (printGivenLevel), and 

velorder makes use of printGivenLevel to 



 

 

for d = 1 to height(tree) 
   printGivenLevel(tree, d); 

 
/*Function to print all nodes at a given level*/ 

printGivenLevel(tree, level) 
if tree is NULL then return; 

if level is 1, then 
    print(tree->data); 

else if level greater than 1, then 
    printGivenLevel(tree->left, level-1); 
    printGivenLevel(tree->right, level-1); 

 

Inorder Traversal (Practice): 
Algorithm Inorder(tree) 

   1. Traverse the left subtree, i.e., call Inorder(left-subtree) 

   2. Visit the root. 

   3. Traverse the right subtree, i.e., call Inorder(right-subtree) 

 

 

Uses of Inorder 

In case of binary search trees (BST), Inorder traversal gives nodes in non-decreasing order. To get nodes of BST in 

non-increasing order, a variation of Inorder traversal where Inorder traversal s reversed can be used. 

Example: Inorder traversal for the above-given figure is 4 2 5 1 3. 

 

Preorder Traversal (Practice): 
Algorithm Preorder(tree) 

   1. Visit the root. 

   2. Traverse the left subtree, i.e., call Preorder(left-subtree) 

   3. Traverse the right subtree, i.e., call Preorder(right-subtree) 

Uses of Preorder 

Preorder traversal is used to create a copy of the tree. Preorder traversal is also used to get prefix expression on of 

an expression tree. Please see http://en.wikipedia.org/wiki/Polish_notation to know why prefix expressions are 

useful.Example: Preorder traversal for the above given figure is 1 2 4 5 3. 

 

Postorder Traversal (Practice): 
Algorithm Postorder(tree) 

   1. Traverse the left subtree, i.e., call Postorder(left-subtree) 

   2. Traverse the right subtree, i.e., call Postorder(right-subtree) 

   3. Visit the root. 

 

Uses of Postorder 

Postorder traversal is used to delete the tree. Please see the question for deletion of tree for details. Postorder 

traversal is also useful to get the postfix expression of an expression tree. Please 

see http://en.wikipedia.org/wiki/Reverse_Polish_notation to for the usage of postfix expression. 

Example: Postorder traversal for the above given figure is 4 5 2 3 1. 

 

Is there any difference in terms of Time Complexity? 

All four traversals require O(n) time as they visit every node exactly once. 

Is there any difference in terms of Extra Space? 

There is difference in terms of extra space required. 



 

 

1. Extra Space required for Level Order Traversal is O(w) where w is maximum width of Binary Tree. In level 

order traversal, queue one by one stores nodes of different level. 

2. Extra Space required for Depth First Traversals is O(h) where h is maximum height of Binary Tree. In Depth 

First Traversals, stack (or function call stack) stores all ancestors of a node. 

Maximum Width of a Binary Tree at depth (or height) h can be 2
h
 where h starts from 0. So the maximum number of 

nodes can be at the last level. And worst case occurs when Binary Tree is a perfect Binary Tree with numbers of 

nodes like 1, 3, 7, 15, …etc. In worst case, value of 2
h
 is Ceil(n/2). 

Height for a Balanced Binary Tree is O(Log n). Worst case occurs for skewed tree and worst case height becomes 

O(n). 

So in worst case extra space required is O(n) for both. But worst cases occur for different types of trees. 

 

 
# Python program to insert element in binary tree   
class newNode():   
    def __init__(self, data):   
        self.key = data  
        self.left = None 
        self.right = None 
           
# A function to do inorder tree traversal  
def printInorder(root):  
   
    if root:  
   
        # First recur on left child  
        printInorder(root.left)  
   
        # then print the data of node  
        print(root.val),  
   
        # now recur on right child  
        printInorder(root.right)  
   

   

   
# A function to do postorder tree traversal  
def printPostorder(root):  
   
    if root:  
   
        # First recur on left child  
        printPostorder(root.left)  
   
        # the recur on right child  
        printPostorder(root.right)  
   
        # now print the data of node  
        print(root.val),  
   

   
# A function to do preorder tree traversal  
def printPreorder(root):  
   
    if root:  
   
        # First print the data of node  
        print(root.val),  
   
        # Then recur on left child  



 

 

        printPreorder(root.left)  
   
        # Finally recur on right child  
        printPreorder(root.right)  
   

    
"""function to insert element in binary tree """ 
def insert(temp,key):  
   
    q = []   
    q.append(temp)   
   
    # Do level order traversal until we find   
    # an empty place.   
    while (len(q)):   
        temp = q[0]   
        q.pop(0)   
   
        if (not temp.left):  
            temp.left = newNode(key)   
            break 
        else:  
            q.append(temp.left)   
   
        if (not temp.right):  
            temp.right = newNode(key)   
            break 
        else:  
            q.append(temp.right)   
   

# function to delete the given deepest node (d_node) in binary tree   
def deleteDeepest(root,d_node):  
    q = []  
    q.append(root)  
    while(len(q)):  
        temp = q.pop(0)  
        if temp is d_node:  
            temp = None 
            return 
        if temp.right:  
            if temp.right is d_node:  
                temp.right = None 
                return 
            else:  
                q.append(temp.right)  
        if temp.left:  
            if temp.left is d_node:  
                temp.left = None 
                return 
            else:  
                q.append(temp.left)  
    
# function to delete element in binary tree   
def deletion(root, key):  
    if root == None :  
        return None 
    if root.left == None and root.right == None:  
        if root.key == key :   
            return None 
        else :  
            return root  
    key_node = None 
    q = []  



 

 

    q.append(root)  
    while(len(q)):  
        temp = q.pop(0)  
        if temp.data == key:  
            key_node = temp  
        if temp.left:  
            q.append(temp.left)  
        if temp.right:  
            q.append(temp.right)  
    if key_node :   
        x = temp.data  
        deleteDeepest(root,temp)  
        key_node.data = x  
    return root  
 

     
# Driver code   
if __name__ == '__main__':  

root = newNode(10)   
    root.left = newNode(11)   
    root.left.left = newNode(7)   
    root.right = newNode(9)   
    root.right.left = newNode(15)   
    root.right.right = newNode(8)   
    

print "Preorder traversal of binary tree is" 
printPreorder(root)  

   
print "\nInorder traversal of binary tree is" 
printInorder(root)  

   
print "\nPostorder traversal of binary tree is" 
printPostorder(root)  

   
   
     key = 12 
     insert(root, key)   
   

print "Preorder traversal of binary tree is" 
printPreorder(root)  

   
print "\nInorder traversal of binary tree is" 
printInorder(root)  

   
print "\nPostorder traversal of binary tree is" 
printPostorder(root)   

 
key = 11 

     root = deletion(root, key)  
 

print "Preorder traversal of binary tree is" 
printPreorder(root)  

   
print "\nInorder traversal of binary tree is" 
printInorder(root)  

   
print "\nPostorder traversal of binary tree is" 
printPostorder(root) 

 

 
# Recursive Python program for level order traversal of Binary Tree 

   



 

 

# A node structure  
class Node:  

   
    # A utility function to create a new node  
    def __init__(self, key):  
        self.data = key   
        self.left = None 
        self.right = None 

   

   
# Function to  print level order traversal of tree  
def printLevelOrder(root):  
    h = height(root)  
    for i in range(1, h+1):  
        printGivenLevel(root, i)  

   

   
# Print nodes at a given level  
def printGivenLevel(root , level):  
    if root is None:  
        return 
    if level == 1:  
        print "%d" %(root.data),  
    elif level > 1 :  
        printGivenLevel(root.left , level-1)  
        printGivenLevel(root.right , level-1)  

   

   
""" Compute the height of a tree--the number of nodes  
    along the longest path from the root node down to  
    the farthest leaf node  
""" 
def height(node):  
    if node is None:  

        return 0  
    else :  
        # Compute the height of each subtree   
        lheight = height(node.left)  
        rheight = height(node.right)  

   
        #Use the larger one  
        if lheight > rheight :  
            return lheight+1 
        else:  
            return rheight+1 

   
# Driver program to test above function  
root = Node(1)  
root.left = Node(2)  
root.right = Node(3)  
root.left.left = Node(4)  
root.left.right = Node(5)  

   
print "Level order traversal of binary tree is -" 
printLevelOrder(root)  

   
#This code is contributed by Nikhil Kumar Singh(nickzuck_007)  

 
Output: 
Level order traversal of binary tree is -  

1 2 3 4 5  



 

 

Time Complexity: O(n^2) in worst case. For
of nodes in the skewed tree. So time complexity of printLevelOrder() is O(n) + O(n
O(n^2). 

 

Binary search tree 
Binary search tree 

Type 

Time complexity in big O notation

 Average 

Space O(n) 

Search O(log n) 

Insert O(log n) 

Delete O(log n) 

 
Binary Search Tree is a node-based binary tree data structure which has the following properties:

• The left subtree of a node contains only nodes with keys lesser than the node’s key.

• The right subtree of a node contains only nodes with keys greater than the node’s key.

• The left and right subtree each must also be a binary search tree.

 

 
 

The above properties of Binary Search Tr

minimum and maximum can be done fast. If there is no ordering, then we may have to compare every key to search 

a given key. 

To search a given key in Binary Search Tree, we first compare 

root. If key is greater than root’s key, we recur for right subtree of root node. Otherwise we recur for left subtree.

 

Illustration to search 6 in below tree: 

1. Start from root. 

2. Compare the inserting element with root, if less than root, then recurse for left, else recurse for right.

3. If element to search is found anywhere, return true, else return false.

 

 
 

O(n^2) in worst case. For a skewed tree, printGivenLevel() takes O(n) time where n is the number 
of nodes in the skewed tree. So time complexity of printLevelOrder() is O(n) + O(n-1) + O(n

Tree 

lexity in big O notation 

Worst case 

O(n) 

O(n) 

O(n) 

O(n) 

based binary tree data structure which has the following properties:

contains only nodes with keys lesser than the node’s key.

The right subtree of a node contains only nodes with keys greater than the node’s key.

The left and right subtree each must also be a binary search tree. 

The above properties of Binary Search Tree provide an ordering among keys so that the operations like search, 

minimum and maximum can be done fast. If there is no ordering, then we may have to compare every key to search 

To search a given key in Binary Search Tree, we first compare it with root, if the key is present at root, we return 

root. If key is greater than root’s key, we recur for right subtree of root node. Otherwise we recur for left subtree.

ing element with root, if less than root, then recurse for left, else recurse for right.

3. If element to search is found anywhere, return true, else return false. 

 

a skewed tree, printGivenLevel() takes O(n) time where n is the number 
1) + O(n-2) + .. + O(1) which is 

based binary tree data structure which has the following properties: 

contains only nodes with keys lesser than the node’s key. 

The right subtree of a node contains only nodes with keys greater than the node’s key. 

ee provide an ordering among keys so that the operations like search, 

minimum and maximum can be done fast. If there is no ordering, then we may have to compare every key to search 

it with root, if the key is present at root, we return 

root. If key is greater than root’s key, we recur for right subtree of root node. Otherwise we recur for left subtree. 

ing element with root, if less than root, then recurse for left, else recurse for right. 



 

 

Insertion of a key 

A new key is always inserted at leaf. We start searching a key from root till we hit a leaf node. Once a leaf node is 

found, the new node is added as a child of the leaf node. 

         100                               100 

        /   \        Insert 40            /    \ 

      20     500    --------->          20     500  

     /  \                              /  \   

    10   30                           10   30 

                                              \    

                                              40 

 

Binary Search Tree When we delete a node, three possibilities arise. 

1) Node to be deleted is leaf: Simply remove from the tree. 

             50                            50 

           /     \         delete(20)      /   \ 

          30      70       --------->    30     70  

         /  \    /  \                     \    /  \  

       20   40  60   80                   40  60   80 

2) Node to be deleted has only one child: Copy the child to the node and delete the child. 

              50                            50 

           /     \         delete(30)      /   \ 

          30      70       --------->    40     70  

            \    /  \                          /  \  

            40  60   80                       60   80 

3) Node to be deleted has two children: Find inorder successor of the node. Copy contents of the inorder successor 

to the node and delete the inorder successor. Note that inorder predecessor can also be used. 

              50                            60 

           /     \         delete(50)      /   \ 

          40      70       --------->    40    70  

                 /  \                            \  

                60   80                           80 

The important thing to note is, inorder successor is needed only when right child is not empty. In this particular case, 

inorder successor can be obtained by finding the minimum value in right child of the node. 

 

// C program to demonstrate delete operation in binary search tree  

#include<stdio.h>  

#include<stdlib.h>  

 

struct node  

{  

 int key;  

 struct node *left, *right;  

};  

 

// A utility function to create a new BST node  

struct node *newNode(int item)  



 

 

{  

 struct node *temp = (struct node *)malloc(sizeof(struct node));  

 temp->key = item;  

 temp->left = temp->right = NULL;  

 return temp;  

}  

 

// A utility function to do inorder traversal of BST  

void inorder(struct node *root)  

{  

 if (root != NULL)  

 {  

  inorder(root->left);  

  printf("%d ", root->key);  

  inorder(root->right);  

 }  

}  

 

/* A utility function to insert a new node with given key in BST */ 

struct node* insert(struct node* node, int key)  

{  

 /* If the tree is empty, return a new node */ 

 if (node == NULL) return newNode(key);  

 

 /* Otherwise, recur down the tree */ 

 if (key < node->key)  

  node->left = insert(node->left, key);  

 else 

  node->right = insert(node->right, key);  

 

 /* return the (unchanged) node pointer */ 

 return node;  

}  

 

/* Given a non-empty binary search tree, return the node with minimum  

key value found in that tree. Note that the entire tree does not  

need to be searched. */ 

struct node * minValueNode(struct node* node)  

{  

 struct node* current = node;  

 

 /* loop down to find the leftmost leaf */ 

 while (current && current->left != NULL)  

  current = current->left;  

 

 return current;  

}  

 

/* Given a binary search tree and a key, this function deletes the key  

and returns the new root */ 

struct node* deleteNode(struct node* root, int key)  

{  

 // base case  

 if (root == NULL) return root;  

 



 

 

 // If the key to be deleted is smaller than the root's key,  

 // then it lies in left subtree  

 if (key < root->key)  

  root->left = deleteNode(root->left, key);  

 

 // If the key to be deleted is greater than the root's key,  

 // then it lies in right subtree  

 else if (key > root->key)  

  root->right = deleteNode(root->right, key);  

 

 // if key is same as root's key, then This is the node  

 // to be deleted  

 else 

 {  

  // node with only one child or no child  

  if (root->left == NULL)  

  {  

   struct node *temp = root->right;  

   free(root);  

   return temp;  

  }  

  else if (root->right == NULL)  

  {  

   struct node *temp = root->left;  

   free(root);  

   return temp;  

  }  

 

  // node with two children: Get the inorder successor (smallest  

  // in the right subtree)  

  struct node* temp = minValueNode(root->right);  

 

  // Copy the inorder successor's content to this node  

  root->key = temp->key;  

 

  // Delete the inorder successor  

  root->right = deleteNode(root->right, temp->key);  

 }  

 return root;  

}  

 

// Driver Program to test above functions  

int main()  

{  

 /* Let us create following BST  

     50  

    /   \  

  30   70  

               / \    / \  

            20 40 60 80 */ 

 struct node *root = NULL;  

 root = insert(root, 50);  

 root = insert(root, 30);  

 root = insert(root, 20);  

 root = insert(root, 40);  



 

 

 root = insert(root, 70);  

 root = insert(root, 60);  

 root = insert(root, 80);  

 

 printf("Inorder traversal of the given tree \n");  

 inorder(root);  

 

 printf("\nDelete 20\n");  

 root = deleteNode(root, 20);  

 printf("Inorder traversal of the modified tree \n");  

 inorder(root);  

 

 printf("\nDelete 30\n");  

 root = deleteNode(root, 30);  

 printf("Inorder traversal of the modified tree \n");  

 inorder(root);  

 

 printf("\nDelete 50\n");  

 root = deleteNode(root, 50);  

 printf("Inorder traversal of the modified tree \n");  

 inorder(root);  

 

 return 0;  

} 

 

# Python program to demonstrate delete operation  

# in binary search tree  

 

# A Binary Tree Node  

class Node:  

 

 # Constructor to create a new node  

 def __init__(self, key):  

  self.key = key  

  self.left = None 

  self.right = None 

 

 

# A utility function to do inorder traversal of BST  

def inorder(root):  

 if root is not None:  

  inorder(root.left)  

  print root.key,  

  inorder(root.right)  

 

 

# A utility function to insert a new node with given key in BST  

def insert( node, key):  

 

 # If the tree is empty, return a new node  

 if node is None:  

  return Node(key)  

 

 # Otherwise recur down the tree  

 if key < node.key:  



 

 

  node.left = insert(node.left, key)  

 else:  

  node.right = insert(node.right, key)  

 

 # return the (unchanged) node pointer  

 return node  

 

# Given a non-empty binary search tree, return the node  

# with minum key value found in that tree. Note that the  

# entire tree does not need to be searched  

def minValueNode( node):  

 current = node  

 

 # loop down to find the leftmost leaf  

 while(current.left is not None):  

  current = current.left  

 

 return current  

 

# Given a binary search tree and a key, this function  

# delete the key and returns the new root  

def deleteNode(root, key):  

 

 # Base Case  

 if root is None:  

  return root  

 

 # If the key to be deleted is smaller than the root's  

 # key then it lies in left subtree  

 if key < root.key:  

  root.left = deleteNode(root.left, key)  

 

 # If the kye to be delete is greater than the root's key  

 # then it lies in right subtree  

 elif(key > root.key):  

  root.right = deleteNode(root.right, key)  

 

 # If key is same as root's key, then this is the node  

 # to be deleted  

 else:  

   

  # Node with only one child or no child  

  if root.left is None :  

   temp = root.right  

   root = None 

   return temp  

    

  elif root.right is None :  

   temp = root.left  

   root = None 

   return temp  

 

  # Node with two children: Get the inorder successor  

  # (smallest in the right subtree)  

  temp = minValueNode(root.right)  



 

 

 

  # Copy the inorder successor's content to this node  

  root.key = temp.key  

 

  # Delete the inorder successor  

  root.right = deleteNode(root.right , temp.key)  

 

 

 return root  

 

# Driver program to test above functions  

""" Let us create following BST  

       50  

      /  \  

  30   70  

  / \    / \  

            20 40 60 80 """ 

 

root = None 

root = insert(root, 50)  

root = insert(root, 30)  

root = insert(root, 20)  

root = insert(root, 40)  

root = insert(root, 70)  

root = insert(root, 60)  

root = insert(root, 80)  

 

print "Inorder traversal of the given tree" 

inorder(root)  

 

print "\nDelete 20" 

root = deleteNode(root, 20)  

print "Inorder traversal of the modified tree" 

inorder(root)  

 

print "\nDelete 30" 

root = deleteNode(root, 30)  

print "Inorder traversal of the modified tree" 

inorder(root)  

 

print "\nDelete 50" 

root = deleteNode(root, 50)  

print "Inorder traversal of the modified tree" 

inorder(root)  

 

Advantages of BST over Hash Table 
Hash Table supports following operations in Θ(1) time. 

1) Search 

2) Insert 

3) Delete 

The time complexity of above operations in a self-balancing Binary Search Tree (BST) (like Red-Black Tree, AVL 

Tree, Splay Tree, etc) is O(Logn). 

So Hash Table seems to beating BST in all common operations. When should we prefer BST over Hash Tables, what 

are advantages. Following are some important points in favor of BSTs. 



 

 

1. We can get all keys in sorted order by just doing Inorder Traversal of BST. This is not a natural operation in 

Hash Tables and requires extra efforts. 

2. Doing order statistics, finding closest lower and greater elements, doing range queries are easy to do with 

BSTs. Like sorting, these operations are not a natural operation with Hash Tables. 

3. BSTs are easy to implement compared to hashing, we can easily implement our own customized BST. To 

implement Hashing, we generally rely on libraries provided by programming languages. 

4. With Self-Balancing BSTs, all operations are guaranteed to work in O(Logn) time. But with Hashing, Θ(1) is 

average time and some particular operations may be costly, especially when table resizing happens. 

 

Construct BST from given preorder traversal 
Given preorder traversal of a binary search tree, construct the BST. 

For example, if the given traversal is {10, 5, 1, 7, 40, 50}, then the output should be root of following tree. 

 

     10 

   /   \ 

  5     40 

 /  \      \ 

1    7      50 

Method 1 ( O(n^2) time complexity ) 

The first element of preorder traversal is always root. We first construct the root. Then we find the index of first 

element which is greater than root. Let the index be ‘i’. The values between root and ‘i’ will be part of left subtree, 

and the values between ‘i+1’ and ‘n-1’ will be part of right subtree. Divide given pre[] at index “i” and recur for left 

and right sub-trees. 

For example in {10, 5, 1, 7, 40, 50}, 10 is the first element, so we make it root. Now we look for the first element 

greater than 10, we find 40. So we know the structure of BST is as following. 

             10 

           /    \ 

          /      \ 

  {5, 1, 7}       {40, 50} 

We recursively follow above steps for subarrays {5, 1, 7} and {40, 50}, and get the complete tree. 

 

# A O(n^2) Python3 program for construction of BST from preorder traversal  

 

# A binary tree node  

class Node():  

  

 # A constructor to create a new node  

 def __init__(self, data):  

  self.data = data  

  self.left = None 

  self.right = None 

 

 

# constructTreeUtil.preIndex is a static variable of  

# function constructTreeUtil  

 

# Function to get the value of static variable  

# constructTreeUtil.preIndex  

def getPreIndex():  

 return constructTreeUtil.preIndex  

 



 

 

# Function to increment the value of static variable  

# constructTreeUtil.preIndex  

def incrementPreIndex():  

 constructTreeUtil.preIndex += 1 

 

# A recurseive function to construct Full from pre[].  

# preIndex is used to keep track of index in pre[[].  

def constructTreeUtil(pre, low, high, size):  

  

 # Base Case  

 if( getPreIndex() >= size or low > high):  

  return None 

 

 # The first node in preorder traversal is root. So take  

 # the node at preIndex from pre[] and make it root,  

 # and increment preIndex  

 root = Node(pre[getPreIndex()])  

 incrementPreIndex()  

 

 # If the current subarray has onlye one element,  

 # no need to recur  

 if low == high :  

  return root  

 

 # Search for the first element greater than root  

 for i in range(low, high+1):  

  if (pre[i] > root.data):  

   break 

  

 # Use the index of element found in preorder to divide  

 # preorder array in two parts. Left subtree and right  

 # subtree  

 root.left = constructTreeUtil(pre, getPreIndex(), i-1 , size)  

 

 root.right = constructTreeUtil(pre, i, high, size)  

  

 return root  

 

# The main function to construct BST from given preorder  

# traversal. This function mailny uses constructTreeUtil()  

def constructTree(pre):  

 size = len(pre)  

 constructTreeUtil.preIndex = 0 

 return constructTreeUtil(pre, 0, size-1, size)  

 

 

def printInorder(root):  

 if root is None:  

  return 

 printInorder(root.left)  

 print root.data,  

 printInorder(root.right)  

 

 

# Driver program to test above function  



 

 

pre = [10, 5, 1, 7, 40, 50]  

 

root = constructTree(pre)  

print "Inorder traversal of the constructed tree:" 

printInorder(root)  

 

Method 2 ( O(n) time complexity ) 

The idea used here is inspired from method 3 of this post. The trick is to set a range {min .. max} for every node. 

Initialize the range as {INT_MIN .. INT_MAX}. The first node will definitely be in range, so create root node. To 

construct the left subtree, set the range as {INT_MIN …root->data}. If a values is in the range {INT_MIN .. root-

>data}, the values is part part of left subtree. To construct the right subtree, set the range as {root->data..max .. 

INT_MAX}. 

 

/* A O(n) program for construction  

of BST from preorder traversal */ 

#include <bits/stdc++.h>  

using namespace std;  

 

 

/* A binary tree node has data, pointer to left child  

and a pointer to right child */ 

class node  

{  

 public:  

 int data;  

 node *left;  

 node *right;  

};  

 

// A utility function to create a node  

node* newNode (int data)  

{  

 node* temp = new node();  

 

 temp->data = data;  

 temp->left = temp->right = NULL;  

 

 return temp;  

}  

 

// A recursive function to construct  

// BST from pre[]. preIndex is used  

// to keep track of index in pre[].  

node* constructTreeUtil( int pre[], int* preIndex, int key,  

        int min, int max, int size )  

{  

 // Base case  

 if( *preIndex >= size )  

  return NULL;  

 

 node* root = NULL;  

 

 // If current element of pre[] is in range, then  

 // only it is part of current subtree  

 if( key > min && key < max )  



 

 

 {  

  // Allocate memory for root of this  

  // subtree and increment *preIndex  

  root = newNode ( key );  

  *preIndex = *preIndex + 1;  

   

  if (*preIndex < size)  

  {  

   // Contruct the subtree under root  

   // All nodes which are in range  

   // {min .. key} will go in left  

   // subtree, and first such node  

   // will be root of left subtree.  

   root->left = constructTreeUtil( pre, preIndex, pre[*preIndex],  

          min, key, size );  

 

   // All nodes which are in range  

   // {key..max} will go in right  

   // subtree, and first such node  

   // will be root of right subtree.  

   root->right = constructTreeUtil( pre, preIndex, pre[*preIndex],  

          key, max, size );  

  }  

 }  

 

 return root;  

}  

 

// The main function to construct BST  

// from given preorder traversal.  

// This function mainly uses constructTreeUtil()  

node *constructTree (int pre[], int size)  

{  

 int preIndex = 0;  

 return constructTreeUtil ( pre, &preIndex, pre[0], INT_MIN,  

       INT_MAX, size );  

}  

 

// A utility function to print inorder  

// traversal of a Binary Tree  

void printInorder (node* node)  

{  

 if (node == NULL)  

  return;  

 printInorder(node->left);  

 cout << node->data << " ";  

 printInorder(node->right);  

}  

 

// Driver code  

int main ()  

{  

 int pre[] = {10, 5, 1, 7, 40, 50};  

 int size = sizeof( pre ) / sizeof( pre[0] );  

 



 

 

 node *root = constructTree(pre, size);  

 

 cout << "Inorder traversal of the constructed tree: \n";  

 printInorder(root);  

 

 return 0;  

}  

 

# A O(n) program for construction of BST from preorder traversal  

 

INT_MIN = float("-infinity")  

INT_MAX = float("infinity")  

 

# A Binary tree node  

class Node:  

 

 # Constructor to created a new node  

 def __init__(self, data):  

  self.data = data  

  self.left = None 

  self.right = None 

 

# Methods to get and set the value of static variable  

# constructTreeUtil.preIndex for function construcTreeUtil()  

def getPreIndex():  

 return constructTreeUtil.preIndex  

 

def incrementPreIndex():  

 constructTreeUtil.preIndex += 1 

 

# A recursive function to construct BST from pre[].  

# preIndex is used to keep track of index in pre[]  

def constructTreeUtil(pre, key, mini, maxi, size):  

  

 # Base Case  

 if(getPreIndex() >= size):  

  return None 

 

 root = None 

  

 # If current element of pre[] is in range, then  

 # only it is part of current subtree  

 if(key > mini and key < maxi):  

 

  # Allocate memory for root of this subtree  

  # and increment constructTreeUtil.preIndex  

  root = Node(key)  

  incrementPreIndex()  

 

  if(getPreIndex() < size):  

    

   # Construct the subtree under root  

   # All nodes which are in range {min.. key} will  

   # go in left subtree, and first such node will  

   # be root of left subtree  



 

 

   root.left = constructTreeUtil(pre,  

      pre[getPreIndex()], mini, key, size)  

 

   # All nodes which are in range{key..max} will  

   # go to right subtree, and first such node will  

   # be root of right subtree  

   root.right = constructTreeUtil(pre,  

     pre[getPreIndex()], key, maxi, size)  

 

 return root  

 

# This is the main function to construct BST from given  

# preorder traversal. This function mainly uses  

# constructTreeUtil()  

def constructTree(pre):  

 constructTreeUtil.preIndex = 0 

 size = len(pre)  

 return constructTreeUtil(pre, pre[0], INT_MIN, INT_MAX, size)  

 

 

# A utility function to print inorder traversal of Binary Tree  

def printInorder(node):  

  

 if node is None:  

  return 

 printInorder(node.left)  

 print node.data,  

 printInorder(node.right)  

 

 

# Driver program to test above function  

pre = [10, 5, 1, 7, 40, 50]  

root = constructTree(pre)  

 

print "Inorder traversal of the constructed tree: " 

printInorder(root)  

 

Merge Two Balanced Binary Search Trees 

You are given two balanced binary search trees e.g., AVL or Red Black Tree. Write a function that merges the two 

given balanced BSTs into a balanced binary search tree. Let there be m elements in first tree and n elements in the 

other tree. Your merge function should take O(m+n) time. 

In the following solutions, it is assumed that sizes of trees are also given as input. If the size is not given, then we can 

get the size by traversing the tree (See this). 

 

Method 1 (Insert elements of first tree to second) 

Take all elements of first BST one by one, and insert them into the second BST. Inserting an element to a self 

balancing BST takes Logn time (See this) where n is size of the BST. So time complexity of this method is Log(n) + 

Log(n+1) … Log(m+n-1). The value of this expression will be between mLogn and mLog(m+n-1). As an optimization, 

we can pick the smaller tree as first tree. 

Method 2 (Merge Inorder Traversals) 

1) Do inorder traversal of first tree and store the traversal in one temp array arr1[]. This step takes O(m) time. 

2) Do inorder traversal of second tree and store the traversal in another temp array arr2[]. This step takes O(n) time. 

3) The arrays created in step 1 and 2 are sorted arrays. Merge the two sorted arrays into one array of size m + n. This 

step takes O(m+n) time. 



 

 

4) Construct a balanced tree from the merged array using the technique discussed in this post. This step takes 

O(m+n) time. 

Time complexity of this method is O(m+n) which is better than method 1. This method takes O(m+n) time even if the 

input BSTs are not balanced. 

Following is implementation of this method. 

 

// C program to Merge Two Balanced Binary Search Trees  

#include <stdio.h>  

#include <stdlib.h>  

 

/* A binary tree node has data, pointer to left child  

and a pointer to right child */ 

struct node  

{  

 int data;  

 struct node* left;  

 struct node* right;  

};  

 

// A utility unction to merge two sorted arrays into one  

int *merge(int arr1[], int arr2[], int m, int n);  

 

// A helper function that stores inorder traversal of a tree in inorder array  

void storeInorder(struct node* node, int inorder[], int *index_ptr);  

 

/* A function that constructs Balanced Binary Search Tree from a sorted array  

See https://www.geeksforgeeks.org/sorted-array-to-balanced-bst/ */ 

struct node* sortedArrayToBST(int arr[], int start, int end);  

 

/* This function merges two balanced BSTs with roots as root1 and root2.  

m and n are the sizes of the trees respectively */ 

struct node* mergeTrees(struct node *root1, struct node *root2, int m, int n)  

{  

 // Store inorder traversal of first tree in an array arr1[]  

 int *arr1 = new int[m];  

 int i = 0;  

 storeInorder(root1, arr1, &i);  

 

 // Store inorder traversal of second tree in another array arr2[]  

 int *arr2 = new int[n];  

 int j = 0;  

 storeInorder(root2, arr2, &j);  

 

 // Merge the two sorted array into one  

 int *mergedArr = merge(arr1, arr2, m, n);  

 

 // Construct a tree from the merged array and return root of the tree  

 return sortedArrayToBST (mergedArr, 0, m+n-1);  

}  

 

/* Helper function that allocates a new node with the  

given data and NULL left and right pointers. */ 

struct node* newNode(int data)  

{  

 struct node* node = (struct node*)  



 

 

      malloc(sizeof(struct node));  

 node->data = data;  

 node->left = NULL;  

 node->right = NULL;  

 

 return(node);  

}  

 

// A utility function to print inorder traversal of a given binary tree  

void printInorder(struct node* node)  

{  

 if (node == NULL)  

  return;  

 

 /* first recur on left child */ 

 printInorder(node->left);  

 

 printf("%d ", node->data);  

 

 /* now recur on right child */ 

 printInorder(node->right);  

}  

 

// A utility unction to merge two sorted arrays into one  

int *merge(int arr1[], int arr2[], int m, int n)  

{  

 // mergedArr[] is going to contain result  

 int *mergedArr = new int[m + n];  

 int i = 0, j = 0, k = 0;  

 

 // Traverse through both arrays  

 while (i < m && j < n)  

 {  

  // Pick the smaler element and put it in mergedArr  

  if (arr1[i] < arr2[j])  

  {  

   mergedArr[k] = arr1[i];  

   i++;  

  }  

  else 

  {  

   mergedArr[k] = arr2[j];  

   j++;  

  }  

  k++;  

 }  

 

 // If there are more elements in first array  

 while (i < m)  

 {  

  mergedArr[k] = arr1[i];  

  i++; k++;  

 }  

 

 // If there are more elements in second array  



 

 

 while (j < n)  

 {  

  mergedArr[k] = arr2[j];  

  j++; k++;  

 }  

 

 return mergedArr;  

}  

 

// A helper function that stores inorder traversal of a tree rooted with node  

void storeInorder(struct node* node, int inorder[], int *index_ptr)  

{  

 if (node == NULL)  

  return;  

 

 /* first recur on left child */ 

 storeInorder(node->left, inorder, index_ptr);  

 

 inorder[*index_ptr] = node->data;  

 (*index_ptr)++; // increase index for next entry  

 

 /* now recur on right child */ 

 storeInorder(node->right, inorder, index_ptr);  

}  

 

/* A function that constructs Balanced Binary Search Tree from a sorted array  

See https://www.geeksforgeeks.org/sorted-array-to-balanced-bst/ */ 

struct node* sortedArrayToBST(int arr[], int start, int end)  

{  

 /* Base Case */ 

 if (start > end)  

 return NULL;  

 

 /* Get the middle element and make it root */ 

 int mid = (start + end)/2;  

 struct node *root = newNode(arr[mid]);  

 

 /* Recursively construct the left subtree and make it  

 left child of root */ 

 root->left = sortedArrayToBST(arr, start, mid-1);  

 

 /* Recursively construct the right subtree and make it  

 right child of root */ 

 root->right = sortedArrayToBST(arr, mid+1, end);  

 

 return root;  

}  

 

/* Driver program to test above functions*/ 

int main()  

{  

 /* Create following tree as first balanced BST  

  100  

    / \  

              50 300  



 

 

              / \  

           20  70  

 */ 

 struct node *root1 = newNode(100);  

 root1->left   = newNode(50);  

 root1->right  = newNode(300);  

 root1->left->left = newNode(20);  

 root1->left->right = newNode(70);  

 

 /* Create following tree as second balanced BST  

  80  

  / \  

            40 120  

 */ 

 struct node *root2 = newNode(80);  

 root2->left   = newNode(40);  

 root2->right  = newNode(120);  

 

 struct node *mergedTree = mergeTrees(root1, root2, 5, 3);  

 

 printf ("Following is Inorder traversal of the merged tree \n");  

 printInorder(mergedTree);  

 

 getchar();  

 return 0;  

} 

Inorder predecessor and successor for a given key in BST 
I recently encountered with a question in an interview at e-commerce company. The interviewer asked the following 

question: There is BST given with root node with key part as integer only. The structure of each node is as follows: 

struct Node  

{  

 int key;  

 struct Node *left, *right ;  

}; 

Following is the algorithm to reach the desired result. Its a recursive method: 

Input: root node, key 

output: predecessor node, successor node 

 

1. If root is NULL 

      then return 

2. if key is found then 

    a. If its left subtree is not null 

        Then predecessor will be the right most  

        child of left subtree or left child itself. 

    b. If its right subtree is not null 

        The successor will be the left most child  

        of right subtree or right child itself. 

    return 

3. If key is smaller then root node 



 

 

        set the successor as root 

        search recursively into left subtree 

    else 

        set the predecessor as root 

        search recursively into right subtree 

// C++ program to find predecessor and successor in a BST  

#include <iostream>  

using namespace std;  

 

// BST Node  

struct Node  

{  

 int key;  

 struct Node *left, *right;  

};  

 

// This function finds predecessor and successor of key in BST.  

// It sets pre and suc as predecessor and successor respectively  

void findPreSuc(Node* root, Node*& pre, Node*& suc, int key)  

{  

 // Base case  

 if (root == NULL) return ;  

 

 // If key is present at root  

 if (root->key == key)  

 {  

  // the maximum value in left subtree is predecessor  

  if (root->left != NULL)  

  {  

   Node* tmp = root->left;  

   while (tmp->right)  

    tmp = tmp->right;  

   pre = tmp ;  

  }  

 

  // the minimum value in right subtree is successor  

  if (root->right != NULL)  

  {  

   Node* tmp = root->right ;  

   while (tmp->left)  

    tmp = tmp->left ;  

   suc = tmp ;  

  }  

  return ;  

 }  

 

 // If key is smaller than root's key, go to left subtree  

 if (root->key > key)  

 {  

  suc = root ;  

  findPreSuc(root->left, pre, suc, key) ;  

 }  

 else // go to right subtree  



 

 

 {  

  pre = root ;  

  findPreSuc(root->right, pre, suc, key) ;  

 }  

}  

 

// A utility function to create a new BST node  

Node *newNode(int item)  

{  

 Node *temp = new Node;  

 temp->key = item;  

 temp->left = temp->right = NULL;  

 return temp;  

}  

 

/* A utility function to insert a new node with given key in BST */ 

Node* insert(Node* node, int key)  

{  

 if (node == NULL) return newNode(key);  

 if (key < node->key)  

  node->left = insert(node->left, key);  

 else 

  node->right = insert(node->right, key);  

 return node;  

}  

 

// Driver program to test above function  

int main()  

{  

 int key = 65; //Key to be searched in BST  

 

/* Let us create following BST  

   50  

  /  \  

  30  70  

  / \ / \  

 20 40 60 80 */ 

 Node *root = NULL;  

 root = insert(root, 50);  

 insert(root, 30);  

 insert(root, 20);  

 insert(root, 40);  

 insert(root, 70);  

 insert(root, 60);  

 insert(root, 80);  

 

 

 Node* pre = NULL, *suc = NULL;  

 

 findPreSuc(root, pre, suc, key);  

 if (pre != NULL)  

 cout << "Predecessor is " << pre->key << endl;  

 else 

 cout << "No Predecessor";  

 



 

 

 if (suc != NULL)  

 cout << "Successor is " << suc->key;  

 else 

 cout << "No Successor";  

 return 0;  

} 

 

# Python program to find predecessor and successor in a BST  

 

# A BST node  

class Node:  

 

 # Constructor to create a new node  

 def __init__(self, key):  

  self.key = key  

  self.left = None 

  self.right = None 

 

# This function finds predecessor and successor of key in BST  

# It sets pre and suc as predecessor and successor respectively  

def findPreSuc(root, key):  

 

 # Base Case  

 if root is None:  

  return 

 # If key is present at root  

 if root.key == key:  

  # the maximum value in left subtree is predecessor  

  if root.left is not None:  

   tmp = root.left  

   while(tmp.right):  

    tmp = tmp.right  

   findPreSuc.pre = tmp  

  # the minimum value in right subtree is successor  

  if root.right is not None:  

   tmp = root.right  

   while(temp.left):  

    tmp = tmp.left  

   findPreSuc.suc = tmp  

  return 

 # If key is smaller than root's key, go to left subtree  

 if root.key > key :  

  findPreSuc.suc = root  

  findPreSuc(root.left, key)  

 

 else: # go to right subtree  

  findPreSuc.pre = root  

  findPreSuc(root.right, key)  

 

# A utility function to insert a new node in with given key in BST  

def insert(node , key):  

 if node is None:  

  return Node(key)  

 if key < node.key:  

  node.left = insert(node.left, key)  



 

 

 else:  

  node.right = insert(node.right, key)  

 return node  

# Driver program to test above function  

key = 65 #Key to be searched in BST  

 

""" Let us create following BST  

  50  

        /  \  

  30  70  

  / \ / \  

 20 40 60 80  

""" 

root = None 

root = insert(root, 50)  

insert(root, 30);  

insert(root, 20);  

insert(root, 40);  

insert(root, 70);  

insert(root, 60);  

insert(root, 80);  

 

# Static variables of the function findPreSuc  

findPreSuc.pre = None 

findPreSuc.suc = None 

 

findPreSuc(root, key)  

 

if findPreSuc.pre is not None:  

 print "Predecessor is", findPreSuc.pre.key  

 

else:  

 print "No Predecessor" 

 

if findPreSuc.suc is not None:  

 print "Successor is", findPreSuc.suc.key  

else:  

 print "No Successor" 

 

AVL tree 
AVL tree 

Type Tree 

Time complexity in big O notation 

 Average Worst case 

Space O(n) O(n) 

Search O(log n) O(log n) 

Insert O(log n) O(log n) 

Delete O(log n) O(log n) 

 

AVL tree is a self-balancing Binary Search Tree (BST) where the difference between heights of left and right 

subtrees cannot be more than one for all nodes. 

 



 

 

An Example Tree that is an AVL Tree 

 
The above tree is AVL because differences between heights of left and right subtrees for every node is less 

than or equal to 1. 

An Example Tree that is NOT an AVL Tree 

 
The above tree is not AVL because differences between heights of left and right subtrees for 8 and 18 is greater than 

1. 

Why AVL Trees? 

Most of the BST operations (e.g., search, max, min, insert, delete.. etc) take O(h) time where h is the height of the 

BST. The cost of these operations may become O(n) for a skewed Binary tree. If we make sure that height of the tree 

remains O(Logn) after every insertion and deletion, then we can guarantee an upper bound of O(Logn) for all these 

operations. The height of an AVL tree is always O(Logn) where n is the number of nodes in the tree (See this video 

lecture for proof). 

Insertion 

To make sure that the given tree remains AVL after every insertion, we must augment the standard BST insert 

operation to perform some re-balancing. Following are two basic operations that can be performed to re-balance a 

BST without violating the BST property (keys(left) < key(root) < keys(right)). 

1) Left Rotation 

2) Right Rotation 

T1, T2 and T3 are subtrees of the tree  

rooted with y (on the left side) or x (on  

the right side)            

     y                               x 

    / \     Right Rotation          /  \ 

   x   T3   - - - - - - - >        T1   y  

  / \       < - - - - - - -            / \ 

 T1  T2     Left Rotation            T2  T3 

Keys in both of the above trees follow the  

following order  

 keys(T1) < key(x) < keys(T2) < key(y) < keys(T3) 

So BST property is not violated anywhere. 

Steps to follow for insertion 

Let the newly inserted node be w 

1) Perform standard BST insert for w. 

2) Starting from w, travel up and find the first unbalanced node. Let z be the first unbalanced node, y be the child of 



 

 

z that comes on the path from w to z and x be the grandchild of z that comes on the path from w to z. 

3) Re-balance the tree by performing appropriate rotations on the subtree rooted with z. There can be 4 possible 

cases that needs to be handled as x, y and z can be arranged in 4 ways. Following are the possible 4 arrangements: 

a) y is left child of z and x is left child of y (Left Left Case) 

b) y is left child of z and x is right child of y (Left Right Case) 

c) y is right child of z and x is right child of y (Right Right Case) 

d) y is right child of z and x is left child of y (Right Left Case) 

Following are the operations to be performed in above mentioned 4 cases. In all of the cases, we only need to re-

balance the subtree rooted with z and the complete tree becomes balanced as the height of subtree (After 

appropriate rotations) rooted with z becomes same as it was before insertion. (See this video lecture for proof) 

a) Left Left Case 

b) T1, T2, T3 and T4 are subtrees. 

c)          z                                      y  

d)         / \                                   /   \ 

e)        y   T4      Right Rotate (z)          x      z 

f)       / \          - - - - - - - - ->      /  \    /  \  

g)      x   T3                               T1  T2  T3  T4 

h)     / \ 

i)   T1   T2 

b) Left Right Case 

     z                               z                           x 

    / \                            /   \                        /  \  

   y   T4  Left Rotate (y)        x    T4  Right Rotate(z)    y      z 

  / \      - - - - - - - - ->    /  \      - - - - - - - ->  / \    / \ 

T1   x                          y    T3                    T1  T2 T3  T4 

    / \                        / \ 

  T2   T3                    T1   T2 

c) Right Right Case 

  z                                y 

 /  \                            /   \  

T1   y     Left Rotate(z)       z      x 

    /  \   - - - - - - - ->    / \    / \ 

   T2   x                     T1  T2 T3  T4 

       / \ 

     T3  T4 

d) Right Left Case 

  z                            z                            x 

  / \                          / \                          /  \  

T1   y   Right Rotate (y)    T1   x      Left Rotate(z)   z      y 

    / \  - - - - - - - - ->     /  \   - - - - - - - ->  / \    / \ 

   x   T4                      T2   y                  T1  T2  T3  T4 

  / \                              /  \ 

T2   T3                           T3   T4 



 

 

 

Insertion Examples: 

 

 



 

 

 

 



 

 

 
implementation 

Following is the implementation for AVL Tree Insertion. The following implementation uses the recursive BST insert 

to insert a new node. In the recursive BST insert, after insertion, we get pointers to all ancestors one by one in a 

bottom-up manner. So we don’t need parent pointer to travel up. The recursive code itself travels up and visits all 

the ancestors of the newly inserted node. 

1) Perform the normal BST insertion. 

2) The current node must be one of the ancestors of the newly inserted node. Update the height of the current 

node. 

3) Get the balance factor (left subtree height – right subtree height) of the current node. 

4) If balance factor is greater than 1, then the current node is unbalanced and we are either in Left Left case or left 

Right case. To check whether it is left left case or not, compare the newly inserted key with the key in left subtree 

root. 

5) If balance factor is less than -1, then the current node is unbalanced and we are either in Right Right case or Right-

Left case. To check whether it is Right Right case or not, compare the newly inserted key with the key in right subtree 

root. 

 

// C program to insert a node in AVL tree  

#include<stdio.h>  

#include<stdlib.h>  

 

// An AVL tree node  

struct Node  

{  

 int key;  

 struct Node *left;  

 struct Node *right;  

 int height;  

};  



 

 

 

// A utility function to get maximum of two integers  

int max(int a, int b);  

 

// A utility function to get the height of the tree  

int height(struct Node *N)  

{  

 if (N == NULL)  

  return 0;  

 return N->height;  

}  

 

// A utility function to get maximum of two integers  

int max(int a, int b)  

{  

 return (a > b)? a : b;  

}  

 

/* Helper function that allocates a new node with the given key and  

 NULL left and right pointers. */ 

struct Node* newNode(int key)  

{  

 struct Node* node = (struct Node*)  

      malloc(sizeof(struct Node));  

 node->key = key;  

 node->left = NULL;  

 node->right = NULL;  

 node->height = 1; // new node is initially added at leaf  

 return(node);  

}  

 

// A utility function to right rotate subtree rooted with y  

// See the diagram given above.  

struct Node *rightRotate(struct Node *y)  

{  

 struct Node *x = y->left;  

 struct Node *T2 = x->right;  

 

 // Perform rotation  

 x->right = y;  

 y->left = T2;  

 

 // Update heights  

 y->height = max(height(y->left), height(y->right))+1;  

 x->height = max(height(x->left), height(x->right))+1;  

 

 // Return new root  

 return x;  

}  

 

// A utility function to left rotate subtree rooted with x  

// See the diagram given above.  

struct Node *leftRotate(struct Node *x)  

{  

 struct Node *y = x->right;  



 

 

 struct Node *T2 = y->left;  

 

 // Perform rotation  

 y->left = x;  

 x->right = T2;  

 

 // Update heights  

 x->height = max(height(x->left), height(x->right))+1;  

 y->height = max(height(y->left), height(y->right))+1;  

 

 // Return new root  

 return y;  

}  

 

// Get Balance factor of node N  

int getBalance(struct Node *N)  

{  

 if (N == NULL)  

  return 0;  

 return height(N->left) - height(N->right);  

}  

 

// Recursive function to insert a key in the subtree rooted  

// with node and returns the new root of the subtree.  

struct Node* insert(struct Node* node, int key)  

{  

 /* 1. Perform the normal BST insertion */ 

 if (node == NULL)  

  return(newNode(key));  

 

 if (key < node->key)  

  node->left = insert(node->left, key);  

 else if (key > node->key)  

  node->right = insert(node->right, key);  

 else // Equal keys are not allowed in BST  

  return node;  

 

 /* 2. Update height of this ancestor node */ 

 node->height = 1 + max(height(node->left),  

      height(node->right));  

 

 /* 3. Get the balance factor of this ancestor  

  node to check whether this node became  

  unbalanced */ 

 int balance = getBalance(node);  

 

 // If this node becomes unbalanced, then  

 // there are 4 cases  

 

 // Left Left Case  

 if (balance > 1 && key < node->left->key)  

  return rightRotate(node);  

 

 // Right Right Case  

 if (balance < -1 && key > node->right->key)  



 

 

  return leftRotate(node);  

 

 // Left Right Case  

 if (balance > 1 && key > node->left->key)  

 {  

  node->left = leftRotate(node->left);  

  return rightRotate(node);  

 }  

 

 // Right Left Case  

 if (balance < -1 && key < node->right->key)  

 {  

  node->right = rightRotate(node->right);  

  return leftRotate(node);  

 }  

 

 /* return the (unchanged) node pointer */ 

 return node;  

}  

 

// A utility function to print preorder traversal  

// of the tree.  

// The function also prints height of every node  

void preOrder(struct Node *root)  

{  

 if(root != NULL)  

 {  

  printf("%d ", root->key);  

  preOrder(root->left);  

  preOrder(root->right);  

 }  

}  

 

/* Drier program to test above function*/ 

int main()  

{  

struct Node *root = NULL;  

 

/* Constructing tree given in the above figure */ 

root = insert(root, 10);  

root = insert(root, 20);  

root = insert(root, 30);  

root = insert(root, 40);  

root = insert(root, 50);  

root = insert(root, 25);  

 

/* The constructed AVL Tree would be  

  30  

  / \  

             20 40  

            / \     \  

         10 25   50  

*/ 

 

printf("Preorder traversal of the constructed AVL tree is \n");  



 

 

preOrder(root);  

 

return 0;  

} 

 

# Python code to insert a node in AVL tree  

 

# Generic tree node class  

class TreeNode(object):  

 def __init__(self, val):  

  self.val = val  

  self.left = None 

  self.right = None 

  self.height = 1 

 

# AVL tree class which supports the  

# Insert operation  

class AVL_Tree(object):  

 

 # Recursive function to insert key in  

 # subtree rooted with node and returns  

 # new root of subtree.  

 def insert(self, root, key):  

  

  # Step 1 - Perform normal BST  

  if not root:  

   return TreeNode(key)  

  elif key < root.val:  

   root.left = self.insert(root.left, key)  

  else:  

   root.right = self.insert(root.right, key)  

 

  # Step 2 - Update the height of the  

  # ancestor node  

  root.height = 1 + max(self.getHeight(root.left),  

      self.getHeight(root.right))  

 

  # Step 3 - Get the balance factor  

  balance = self.getBalance(root)  

 

  # Step 4 - If the node is unbalanced,  

  # then try out the 4 cases  

  # Case 1 - Left Left  

  if balance > 1 and key < root.left.val:  

   return self.rightRotate(root)  

 

  # Case 2 - Right Right  

  if balance < -1 and key > root.right.val:  

   return self.leftRotate(root)  

 

  # Case 3 - Left Right  

  if balance > 1 and key > root.left.val:  

   root.left = self.leftRotate(root.left)  

   return self.rightRotate(root)  

 



 

 

  # Case 4 - Right Left  

  if balance < -1 and key < root.right.val:  

   root.right = self.rightRotate(root.right)  

   return self.leftRotate(root)  

 

  return root  

 

 def leftRotate(self, z):  

 

  y = z.right  

  T2 = y.left  

 

  # Perform rotation  

  y.left = z  

  z.right = T2  

 

  # Update heights  

  z.height = 1 + max(self.getHeight(z.left),  

      self.getHeight(z.right))  

  y.height = 1 + max(self.getHeight(y.left),  

      self.getHeight(y.right))  

 

  # Return the new root  

  return y  

 

 def rightRotate(self, z):  

 

  y = z.left  

  T3 = y.right  

 

  # Perform rotation  

  y.right = z  

  z.left = T3  

 

  # Update heights  

  z.height = 1 + max(self.getHeight(z.left),  

      self.getHeight(z.right))  

  y.height = 1 + max(self.getHeight(y.left),  

      self.getHeight(y.right))  

 

  # Return the new root  

  return y  

 

 def getHeight(self, root):  

  if not root:  

   return 0 

 

  return root.height  

 

 def getBalance(self, root):  

  if not root:  

   return 0 

 

  return self.getHeight(root.left) - self.getHeight(root.right)  

 



 

 

 def preOrder(self, root):  

 

  if not root:  

   return 

 

  print("{0} ".format(root.val), end="")  

  self.preOrder(root.left)  

  self.preOrder(root.right)  

 

 

# Driver program to test above function  

myTree = AVL_Tree()  

root = None 

 

root = myTree.insert(root, 10)  

root = myTree.insert(root, 20)  

root = myTree.insert(root, 30)  

root = myTree.insert(root, 40)  

root = myTree.insert(root, 50)  

root = myTree.insert(root, 25)  

 

"""The constructed AVL Tree would be  

  30  

  / \  

             20 40  

            / \     \  

         10  25  50""" 

 

# Preorder Traversal  

print("Preorder traversal of the constructed AVL tree is")  

myTree.preOrder(root)  

print()  

 

Output: 
  Preorder traversal of the constructed AVL tree is 

  30 20 10 25 40 50 

Time Complexity: The rotation operations (left and right rotate) take constant time as only a few pointers are being 

changed there. Updating the height and getting the balance factor also takes constant time. So the time complexity 

of AVL insert remains same as BST insert which is O(h) where h is the height of the tree. Since AVL tree is balanced, 

the height is O(Logn). So time complexity of AVL insert is O(Logn). 

 

 

 

Steps to follow for deletion. 

To make sure that the given tree remains AVL after every deletion, we must augment the standard BST delete 

operation to perform some re-balancing. Following are two basic operations that can be performed to re-balance a 

BST without violating the BST property (keys(left) < key(root) < keys(right)). 

1) Left Rotation 

2) Right Rotation 

 

Let w be the node to be deleted 

1) Perform standard BST delete for w. 

2) Starting from w, travel up and find the first unbalanced node. Let z be the first unbalanced node, y be the larger 

height child of z, and x be the larger height child of y. Note that the definitions of x and y are different 



 

 

from insertion here. 

3) Re-balance the tree by performing appropriate rotations on the subtree rooted with z. There can be 4 possible 

cases that needs to be handled as x, y and z can be arranged in 4 ways. Following are the possible 4 arrangements: 

a) y is left child of z and x is left child of y (Left Left Case) 

b) y is left child of z and x is right child of y (Left Right Case) 

c) y is right child of z and x is right child of y (Right Right Case) 

d) y is right child of z and x is left child of y (Right Left Case) 

Like insertion, following are the operations to be performed in above mentioned 4 cases. Note that, unlike insertion, 

fixing the node z won’t fix the complete AVL tree. After fixing z, we may have to fix ancestors of z as well 

 

 

 
 

A node with value 32 is being deleted. After deleting 32, we travel up and find the first unbalanaced node which is 

44. We mark it as z, its higher height child as y which is 62, and y’s higher height child as x which could be either 78 

or 50 as both are of same height. We have considered 78. Now the case is Right Right, so we perform left rotation. 

 

C implementation 

Following is the C implementation for AVL Tree Deletion. The following C implementation uses the recursive BST 

delete as basis. In the recursive BST delete, after deletion, we get pointers to all ancestors one by one in bottom up 

manner. So we don’t need parent pointer to travel up. The recursive code itself travels up and visits all the ancestors 

of the deleted node. 



 

 

1) Perform the normal BST deletion. 

2) The current node must be one of the ancestors of the deleted node. Update the height of the current node. 

3) Get the balance factor (left subtree height – right subtree height) of the current node. 

4) If balance factor is greater than 1, then the current node is unbalanced and we are either in Left Left case or Left 

Right case. To check whether it is Left Left case or Left Right case, get the balance factor of left subtree. If balance 

factor of the left subtree is greater than or equal to 0, then it is Left Left case, else Left Right case. 

5) If balance factor is less than -1, then the current node is unbalanced and we are either in Right Right case or Right 

Left case. To check whether it is Right Right case or Right Left case, get the balance factor of right subtree. If the 

balance factor of the right subtree is smaller than or equal to 0, then it is Right Right case, else Right Left case. 

 

// C program to delete a node from AVL Tree  

#include<stdio.h>  

#include<stdlib.h>  

 

// An AVL tree node  

struct Node  

{  

 int key;  

 struct Node *left;  

 struct Node *right;  

 int height;  

};  

 

// A utility function to get maximum of two integers  

int max(int a, int b);  

 

// A utility function to get height of the tree  

int height(struct Node *N)  

{  

 if (N == NULL)  

  return 0;  

 return N->height;  

}  

 

// A utility function to get maximum of two integers  

int max(int a, int b)  

{  

 return (a > b)? a : b;  

}  

 

/* Helper function that allocates a new node with the given key and  

 NULL left and right pointers. */ 

struct Node* newNode(int key)  

{  

 struct Node* node = (struct Node*) malloc(sizeof(struct Node));  

 node->key = key;  

 node->left = NULL;  

 node->right = NULL;  

 node->height = 1; // new node is initially added at leaf  

 return(node);  

}  

 

// A utility function to right rotate subtree rooted with y  

// See the diagram given above.  

struct Node *rightRotate(struct Node *y)  



 

 

{  

 struct Node *x = y->left;  

 struct Node *T2 = x->right;  

 

 // Perform rotation  

 x->right = y;  

 y->left = T2;  

 

 // Update heights  

 y->height = max(height(y->left), height(y->right))+1;  

 x->height = max(height(x->left), height(x->right))+1;  

 

 // Return new root  

 return x;  

}  

 

// A utility function to left rotate subtree rooted with x  

// See the diagram given above.  

struct Node *leftRotate(struct Node *x)  

{  

 struct Node *y = x->right;  

 struct Node *T2 = y->left;  

 

 // Perform rotation  

 y->left = x;  

 x->right = T2;  

 

 // Update heights  

 x->height = max(height(x->left), height(x->right))+1;  

 y->height = max(height(y->left), height(y->right))+1;  

 

 // Return new root  

 return y;  

}  

 

// Get Balance factor of node N  

int getBalance(struct Node *N)  

{  

 if (N == NULL)  

  return 0;  

 return height(N->left) - height(N->right);  

}  

 

struct Node* insert(struct Node* node, int key)  

{  

 /* 1. Perform the normal BST rotation */ 

 if (node == NULL)  

  return(newNode(key));  

 

 if (key < node->key)  

  node->left = insert(node->left, key);  

 else if (key > node->key)  

  node->right = insert(node->right, key);  

 else // Equal keys not allowed  

  return node;  



 

 

 

 /* 2. Update height of this ancestor node */ 

 node->height = 1 + max(height(node->left), height(node->right));  

 

 /* 3. Get the balance factor of this ancestor  

  node to check whether this node became  

  unbalanced */ 

 int balance = getBalance(node);  

 

 // If this node becomes unbalanced, then there are 4 cases  

 

 // Left Left Case  

 if (balance > 1 && key < node->left->key)  

  return rightRotate(node);  

 

 // Right Right Case  

 if (balance < -1 && key > node->right->key)  

  return leftRotate(node);  

 

 // Left Right Case  

 if (balance > 1 && key > node->left->key)  

 {  

  node->left = leftRotate(node->left);  

  return rightRotate(node);  

 }  

 

 // Right Left Case  

 if (balance < -1 && key < node->right->key)  

 {  

  node->right = rightRotate(node->right);  

  return leftRotate(node);  

 }  

 

 /* return the (unchanged) node pointer */ 

 return node;  

}  

 

/* Given a non-empty binary search tree, return the  

node with minimum key value found in that tree.  

Note that the entire tree does not need to be  

searched. */ 

struct Node * minValueNode(struct Node* node)  

{  

 struct Node* current = node;  

 

 /* loop down to find the leftmost leaf */ 

 while (current->left != NULL)  

  current = current->left;  

 

 return current;  

}  

 

// Recursive function to delete a node with given key  

// from subtree with given root. It returns root of  

// the modified subtree.  



 

 

struct Node* deleteNode(struct Node* root, int key)  

{  

 // STEP 1: PERFORM STANDARD BST DELETE  

 

 if (root == NULL)  

  return root;  

 

 // If the key to be deleted is smaller than the  

 // root's key, then it lies in left subtree  

 if ( key < root->key )  

  root->left = deleteNode(root->left, key);  

 

 // If the key to be deleted is greater than the  

 // root's key, then it lies in right subtree  

 else if( key > root->key )  

  root->right = deleteNode(root->right, key);  

 

 // if key is same as root's key, then This is  

 // the node to be deleted  

 else 

 {  

  // node with only one child or no child  

  if( (root->left == NULL) || (root->right == NULL) )  

  {  

   struct Node *temp = root->left ? root->left : root->right;  

 

   // No child case  

   if (temp == NULL)  

   {  

    temp = root;  

    root = NULL;  

   }  

   else // One child case  

   *root = *temp; // Copy the contents of  

       // the non-empty child  

   free(temp);  

  }  

  else 

  {  

   // node with two children: Get the inorder  

   // successor (smallest in the right subtree)  

   struct Node* temp = minValueNode(root->right);  

 

   // Copy the inorder successor's data to this node  

   root->key = temp->key;  

 

   // Delete the inorder successor  

   root->right = deleteNode(root->right, temp->key);  

  }  

 }  

 

 // If the tree had only one node then return  

 if (root == NULL)  

 return root;  

 



 

 

 // STEP 2: UPDATE HEIGHT OF THE CURRENT NODE  

 root->height = 1 + max(height(root->left), height(root->right));  

 

 // STEP 3: GET THE BALANCE FACTOR OF THIS NODE (to  

 // check whether this node became unbalanced)  

 int balance = getBalance(root);  

 

 // If this node becomes unbalanced, then there are 4 cases  

 

 // Left Left Case  

 if (balance > 1 && getBalance(root->left) >= 0)  

  return rightRotate(root);  

 

 // Left Right Case  

 if (balance > 1 && getBalance(root->left) < 0)  

 {  

  root->left = leftRotate(root->left);  

  return rightRotate(root);  

 }  

 

 // Right Right Case  

 if (balance < -1 && getBalance(root->right) <= 0)  

  return leftRotate(root);  

 

 // Right Left Case  

 if (balance < -1 && getBalance(root->right) > 0)  

 {  

  root->right = rightRotate(root->right);  

  return leftRotate(root);  

 }  

 

 return root;  

}  

 

// A utility function to print preorder traversal of  

// the tree.  

// The function also prints height of every node  

void preOrder(struct Node *root)  

{  

 if(root != NULL)  

 {  

  printf("%d ", root->key);  

  preOrder(root->left);  

  preOrder(root->right);  

 }  

}  

 

/* Driver program to test above function*/ 

int main()  

{  

struct Node *root = NULL;  

 

/* Constructing tree given in the above figure */ 

 root = insert(root, 9);  

 root = insert(root, 5);  



 

 

 root = insert(root, 10);  

 root = insert(root, 0);  

 root = insert(root, 6);  

 root = insert(root, 11);  

 root = insert(root, -1);  

 root = insert(root, 1);  

 root = insert(root, 2);  

 

 /* The constructed AVL Tree would be  

   9  

  / \  

              1 10  

             / \    \  

           0    5  11  

         /      / \  

      -1      2  6  

 */ 

 

 printf("Preorder traversal of the constructed AVL " 

  "tree is \n");  

 preOrder(root);  

 

 root = deleteNode(root, 10);  

 

 /* The AVL Tree after deletion of 10  

   1  

  / \  

              0   9  

            /    / \  

         -1    5   11  

  / \  

              2   6  

 */ 

 printf("\nPreorder traversal after deletion of 10 \n");  

 preOrder(root);  

 

 return 0;  

} 

 

# Python code to delete a node in AVL tree  

# Generic tree node class  

class TreeNode(object):  

 def __init__(self, val):  

  self.val = val  

  self.left = None 

  self.right = None 

  self.height = 1 

 

# AVL tree class which supports insertion,  

# deletion operations  

class AVL_Tree(object):  

 

 def insert(self, root, key):  

   

  # Step 1 - Perform normal BST  



 

 

  if not root:  

   return TreeNode(key)  

  elif key < root.val:  

   root.left = self.insert(root.left, key)  

  else:  

   root.right = self.insert(root.right, key)  

 

  # Step 2 - Update the height of the  

  # ancestor node  

  root.height = 1 + max(self.getHeight(root.left), self.getHeight(root.right))  

 

  # Step 3 - Get the balance factor  

  balance = self.getBalance(root)  

 

  # Step 4 - If the node is unbalanced,  

  # then try out the 4 cases  

  # Case 1 - Left Left  

  if balance > 1 and key < root.left.val:  

   return self.rightRotate(root)  

 

  # Case 2 - Right Right  

  if balance < -1 and key > root.right.val:  

   return self.leftRotate(root)  

 

  # Case 3 - Left Right  

  if balance > 1 and key > root.left.val:  

   root.left = self.leftRotate(root.left)  

   return self.rightRotate(root)  

 

  # Case 4 - Right Left  

  if balance < -1 and key < root.right.val:  

   root.right = self.rightRotate(root.right)  

   return self.leftRotate(root)  

 

  return root  

 

 # Recursive function to delete a node with  

 # given key from subtree with given root.  

 # It returns root of the modified subtree.  

 def delete(self, root, key):  

 

  # Step 1 - Perform standard BST delete  

  if not root:  

   return root  

 

  elif key < root.val:  

   root.left = self.delete(root.left, key)  

 

  elif key > root.val:  

   root.right = self.delete(root.right, key)  

 

  else:  

   if root.left is None:  

    temp = root.right  

    root = None 



 

 

    return temp  

 

   elif root.right is None:  

    temp = root.left  

    root = None 

    return temp  

 

   temp = self.getMinValueNode(root.right)  

   root.val = temp.val  

   root.right = self.delete(root.right, temp.val)  

 

  # If the tree has only one node,  

  # simply return it  

  if root is None:  

   return root  

 

  # Step 2 - Update the height of the  

  # ancestor node  

  root.height = 1 + max(self.getHeight(root.left), self.getHeight(root.right))  

 

  # Step 3 - Get the balance factor  

  balance = self.getBalance(root)  

 

  # Step 4 - If the node is unbalanced,  

  # then try out the 4 cases  

  # Case 1 - Left Left  

  if balance > 1 and self.getBalance(root.left) >= 0:  

   return self.rightRotate(root)  

 

  # Case 2 - Right Right  

  if balance < -1 and self.getBalance(root.right) <= 0:  

   return self.leftRotate(root)  

 

  # Case 3 - Left Right  

  if balance > 1 and self.getBalance(root.left) < 0:  

   root.left = self.leftRotate(root.left)  

   return self.rightRotate(root)  

 

  # Case 4 - Right Left  

  if balance < -1 and self.getBalance(root.right) > 0:  

   root.right = self.rightRotate(root.right)  

   return self.leftRotate(root)  

 

  return root  

 

 def leftRotate(self, z):  

 

  y = z.right  

  T2 = y.left  

 

  # Perform rotation  

  y.left = z  

  z.right = T2  

 

  # Update heights  



 

 

  z.height = 1 + max(self.getHeight(z.left), self.getHeight(z.right))  

  y.height = 1 + max(self.getHeight(y.left), self.getHeight(y.right))  

 

  # Return the new root  

  return y  

 

 def rightRotate(self, z):  

  y = z.left  

  T3 = y.right  

 

  # Perform rotation  

  y.right = z  

  z.left = T3  

 

  # Update heights  

  z.height = 1 + max(self.getHeight(z.left), self.getHeight(z.right))  

  y.height = 1 + max(self.getHeight(y.left), self.getHeight(y.right))  

 

  # Return the new root  

  return y  

 

 def getHeight(self, root):  

  if not root:  

   return 0 

  return root.height  

 def getBalance(self, root):  

  if not root:  

   return 0 

  return self.getHeight(root.left) - self.getHeight(root.right)  

 

 def getMinValueNode(self, root):  

  if root is None or root.left is None:  

   return root  

  return self.getMinValueNode(root.left)  

 

 def preOrder(self, root):  

 

  if not root:  

   return 

 

  print("{0} ".format(root.val), end="")  

  self.preOrder(root.left)  

  self.preOrder(root.right)  

myTree = AVL_Tree()  

root = None 

nums = [9, 5, 10, 0, 6, 11, -1, 1, 2]  

 

for num in nums:  

 root = myTree.insert(root, num)  

 

# Preorder Traversal  

print("Preorder Traversal after insertion -")  

myTree.preOrder(root)  

print()  

 



 

 

# Delete  

key = 10 

root = myTree.delete(root, key)  

 

# Preorder Traversal  

print("Preorder Traversal after deletion -

myTree.preOrder(root)  

print()  

Preorder traversal of the constructed AVL tree is 

9 1 0 -1 5 2 6 10 11  

Preorder traversal after deletion of 10 

1 0 -1 9 5 2 6 11  

Time Complexity: The rotation operations (left and right rotate) take constant time as only few pointers are being 

changed there. Updating the height and getting the balance factor also take

AVL delete remains same as BST delete which is O(h) where h is height of the tree. Since AVL tree is balanced, the 

height is O(Logn). So time complexity of AVL delete is O(Log n).

 

Red–black tree 
Red-black tree 

Type 

Time complexity in big O notation

 Average 

Space O(n) 

Search O(log n) 

Insert O(log n) 

Delete O(log n) 

 

Red-Black Tree is a self-balancing Binary Search Tree (BST) where every node follows following 

1) Every node has a color either red or black.

2) Root of tree is always black. 

3) All leaves (NIL) are black. (All leaves are same color as the root.)

4) There are no two adjacent red nodes (A red node cannot have a red parent or red child).

5) Every path from a node (including root) to any of its descendant NULL node has the same number of black nodes.

 

 

Why Red-Black Trees? 
Most of the BST operations (e.g., search, max, min, insert, delete.. etc) take O(h) time where h is the height of the 

BST. The cost of these operations may become O(n) for a skewed Binary tree. If we make sure that height of the tree 

-")  

Preorder traversal of the constructed AVL tree is  

Preorder traversal after deletion of 10  

The rotation operations (left and right rotate) take constant time as only few pointers are being 

changed there. Updating the height and getting the balance factor also take constant time. So the time complexity of 

AVL delete remains same as BST delete which is O(h) where h is height of the tree. Since AVL tree is balanced, the 

height is O(Logn). So time complexity of AVL delete is O(Log n). 

Tree 

Time complexity in big O notation 

Worst case 

O(n) 

O(log n) 

O(log n) 

O(log n) 

balancing Binary Search Tree (BST) where every node follows following 

Every node has a color either red or black. 

All leaves (NIL) are black. (All leaves are same color as the root.) 

There are no two adjacent red nodes (A red node cannot have a red parent or red child).

ry path from a node (including root) to any of its descendant NULL node has the same number of black nodes.

 

Most of the BST operations (e.g., search, max, min, insert, delete.. etc) take O(h) time where h is the height of the 

The cost of these operations may become O(n) for a skewed Binary tree. If we make sure that height of the tree 

The rotation operations (left and right rotate) take constant time as only few pointers are being 

constant time. So the time complexity of 

AVL delete remains same as BST delete which is O(h) where h is height of the tree. Since AVL tree is balanced, the 

balancing Binary Search Tree (BST) where every node follows following rules. 

There are no two adjacent red nodes (A red node cannot have a red parent or red child). 

ry path from a node (including root) to any of its descendant NULL node has the same number of black nodes. 

Most of the BST operations (e.g., search, max, min, insert, delete.. etc) take O(h) time where h is the height of the 

The cost of these operations may become O(n) for a skewed Binary tree. If we make sure that height of the tree 



 

 

remains O(Logn) after every insertion and deletion, then we can guarantee an upper bound of O(Logn) for all these 

operations. The height of a Red-Black tree is always O(Logn) where n is the number of nodes in the tree. 

 

Comparison with AVL Tree 

The AVL trees are more balanced compared to Red-Black Trees, but they may cause more rotations during insertion 

and deletion. So if your application involves many frequent insertions and deletions, then Red Black trees should be 

preferred. And if the insertions and deletions are less frequent and search is a more frequent operation, then AVL 

tree should be preferred over Red-Black Tree. 

 

How does a Red-Black Tree ensure balance? 

A simple example to understand balancing is, a chain of 3 nodes is not possible in the Red-Black tree. We can try any 

combination of colours and see all of them violate Red-Black tree property. 

 
A chain of 3 nodes is nodes is not possible in Red-Black Trees.  

Following are NOT Red-Black Trees 

        30             30               30        

       / \            /  \             /  \ 

     20  NIL         20   NIL         20   NIL 

    / \             / \              /  \    

  10  NIL          10  NIL          10  NIL   

Violates          Violates        Violates 

Property 5.      Property 5       Property 4  

 

Following are different possible Red-Black Trees with above 3 keys 

         20                           20 

       /   \                        /   \ 

     10     30                    10     30 

    /  \   /  \                 /  \    /  \ 

 NIL  NIL NIL NIL             NIL  NIL NIL NIL 

 
From the above examples, we get some idea how Red-Black trees ensure balance. Following is an important fact 

about balancing in Red-Black Trees. 

Black Height of a Red-Black Tree : 

Black height is number of black nodes on a path from root to a leaf. Leaf nodes are also counted black nodes. From 

above properties 3 and 4, we can derive, a Red-Black Tree of height h has black-height >= h/2. 

 

Every Red Black Tree with n nodes has height <= 2Log2(n+1) 

This can be proved using following facts: 

1) For a general Binary Tree, let k be the minimum number of nodes on all root to NULL paths, then n >= 2
k
 – 1 (Ex. If 

k is 3, then n is atleast 7). This expression can also be written as k <= Log2(n+1) 

2) From property 4 of Red-Black trees and above claim, we can say in a Red-Black Tree with n nodes, there is a root 

to leaf path with at-most Log2(n+1) black nodes. 

3) From property 3 of Red-Black trees, we can claim that the number black nodes in a Red-Black tree is at least ⌊ n/2 

⌋ where n is the total number of nodes. 

From above 2 points, we can conclude the fact that Red Black Tree with n nodes has height <= 2Log2(n+1) 

In this post, we introduced Red-Black trees and discussed how balance is ensured. The hard part is to maintain 

balance when keys are added and removed. We will soon be discussing insertion and deletion operations in coming 

posts on the Red-Black tree. 

 
In AVL tree insertion, we used rotation as a tool to do balancing after insertion caused imbalance. In Red-Black tree, 

we use two tools to do balancing. 

1) Recoloring 

2) Rotation 



 

 

We try recoloring first, if recoloring doesn’t work, then we go for rotation. Following is detailed algorithm. The 

algorithms has mainly two cases depending upon the color of uncle. If uncle is red, we do recoloring. If uncle is black, 

we do rotations and/or recoloring. 

Color of a NULL node is considered as BLACK.

Let x be the newly inserted node. 

1) Perform standard BST insertion and make the color of newly inserted nodes as RED.

2) If x is root, change color of x as BLACK (Black height of complete tree increases by 1).

3) Do following if color of x’s parent is not BLACK

….a) If x’s uncle is RED (Grand parent must have been black from

……..(i) Change color of parent and uncle as BLACK.

……..(ii) color of grand parent as RED. 

……..(iii) Change x = x’s grandparent, repeat steps 2 and 3 for new x.

 

 
….b) If x’s uncle is BLACK, then there can be four configurations for x, x’s parent (

similar to AVL Tree) 

……..i) Left Left Case (p is left child of g and x is left child o

……..ii) Left Right Case (p is left child of g and x is right child of p)

……..iii) Right Right Case (Mirror of case i)

……..iv) Right Left Case (Mirror of case ii)

Following are operations to be performed in four subcases when uncle is BLACK.

All four cases when Uncle is BLACK 

Left Left Case (See g, p and x) 

 

Left Right Case (See g, p and x) 

Right Right Case (See g, p and x) 

ing doesn’t work, then we go for rotation. Following is detailed algorithm. The 

algorithms has mainly two cases depending upon the color of uncle. If uncle is red, we do recoloring. If uncle is black, 

is considered as BLACK. 

and make the color of newly inserted nodes as RED. 

hange color of x as BLACK (Black height of complete tree increases by 1). 

Do following if color of x’s parent is not BLACK and x is not root. 

(Grand parent must have been black from property 4) 

Change color of parent and uncle as BLACK. 

Change x = x’s grandparent, repeat steps 2 and 3 for new x. 

there can be four configurations for x, x’s parent (p) and x’s grandparent (

Left Left Case (p is left child of g and x is left child of p) 

Left Right Case (p is left child of g and x is right child of p) 

Right Right Case (Mirror of case i) 

Right Left Case (Mirror of case ii) 

Following are operations to be performed in four subcases when uncle is BLACK. 

ing doesn’t work, then we go for rotation. Following is detailed algorithm. The 

algorithms has mainly two cases depending upon the color of uncle. If uncle is red, we do recoloring. If uncle is black, 

 

 

) and x’s grandparent (g) (This is 

 

 



 

 

Right Left Case (See g, p and x) 

Examples of Insertion 

/** C++ implementation for Red-Black Tree Insertion **/

#include <bits/stdc++.h>  

using namespace std;  

 

enum Color {RED, BLACK};  

 

struct Node  

{  

 int data;  

 bool color;  

 Node *left, *right, *parent;  

 

 // Constructor  

Black Tree Insertion **/ 

 

 

 



 

 

 Node(int data)  

 {  

 this->data = data;  

 left = right = parent = NULL;  

 this->color = RED;  

 }  

};  

 

// Class to represent Red-Black Tree  

class RBTree  

{  

private:  

 Node *root;  

protected:  

 void rotateLeft(Node *&, Node *&);  

 void rotateRight(Node *&, Node *&);  

 void fixViolation(Node *&, Node *&);  

public:  

 // Constructor  

 RBTree() { root = NULL; }  

 void insert(const int &n);  

 void inorder();  

 void levelOrder();  

};  

 

// A recursive function to do level order traversal  

void inorderHelper(Node *root)  

{  

 if (root == NULL)  

  return;  

 

 inorderHelper(root->left);  

 cout << root->data << " ";  

 inorderHelper(root->right);  

}  

 

/* A utility function to insert a new node with given key  

in BST */ 

Node* BSTInsert(Node* root, Node *pt)  

{  

 /* If the tree is empty, return a new node */ 

 if (root == NULL)  

 return pt;  

 

 /* Otherwise, recur down the tree */ 

 if (pt->data < root->data)  

 {  

  root->left = BSTInsert(root->left, pt);  

  root->left->parent = root;  

 }  



 

 

 else if (pt->data > root->data)  

 {  

  root->right = BSTInsert(root->right, pt);  

  root->right->parent = root;  

 }  

 

 /* return the (unchanged) node pointer */ 

 return root;  

}  

 

// Utility function to do level order traversal  

void levelOrderHelper(Node *root)  

{  

 if (root == NULL)  

  return;  

 

 std::queue<Node *> q;  

 q.push(root);  

 

 while (!q.empty())  

 {  

  Node *temp = q.front();  

  cout << temp->data << " ";  

  q.pop();  

 

  if (temp->left != NULL)  

   q.push(temp->left);  

 

  if (temp->right != NULL)  

   q.push(temp->right);  

 }  

}  

 

void RBTree::rotateLeft(Node *&root, Node *&pt)  

{  

 Node *pt_right = pt->right;  

 

 pt->right = pt_right->left;  

 

 if (pt->right != NULL)  

  pt->right->parent = pt;  

 

 pt_right->parent = pt->parent;  

 

 if (pt->parent == NULL)  

  root = pt_right;  

 

 else if (pt == pt->parent->left)  

  pt->parent->left = pt_right;  

 



 

 

 else 

  pt->parent->right = pt_right;  

 

 pt_right->left = pt;  

 pt->parent = pt_right;  

}  

 

void RBTree::rotateRight(Node *&root, Node *&pt)  

{  

 Node *pt_left = pt->left;  

 

 pt->left = pt_left->right;  

 

 if (pt->left != NULL)  

  pt->left->parent = pt;  

 

 pt_left->parent = pt->parent;  

 

 if (pt->parent == NULL)  

  root = pt_left;  

 

 else if (pt == pt->parent->left)  

  pt->parent->left = pt_left;  

 

 else 

  pt->parent->right = pt_left;  

 

 pt_left->right = pt;  

 pt->parent = pt_left;  

}  

 

// This function fixes violations caused by BST insertion  

void RBTree::fixViolation(Node *&root, Node *&pt)  

{  

 Node *parent_pt = NULL;  

 Node *grand_parent_pt = NULL;  

 

 while ((pt != root) && (pt->color != BLACK) &&  

  (pt->parent->color == RED))  

 {  

 

  parent_pt = pt->parent;  

  grand_parent_pt = pt->parent->parent;  

 

  /* Case : A  

   Parent of pt is left child of Grand-parent of pt */ 

  if (parent_pt == grand_parent_pt->left)  

  {  

 

   Node *uncle_pt = grand_parent_pt->right;  



 

 

 

   /* Case : 1  

   The uncle of pt is also red  

   Only Recoloring required */ 

   if (uncle_pt != NULL && uncle_pt->color == RED)  

   {  

    grand_parent_pt->color = RED;  

    parent_pt->color = BLACK;  

    uncle_pt->color = BLACK;  

    pt = grand_parent_pt;  

   }  

 

   else 

   {  

    /* Case : 2  

    pt is right child of its parent  

    Left-rotation required */ 

    if (pt == parent_pt->right)  

    {  

     rotateLeft(root, parent_pt);  

     pt = parent_pt;  

     parent_pt = pt->parent;  

    }  

 

    /* Case : 3  

    pt is left child of its parent  

    Right-rotation required */ 

    rotateRight(root, grand_parent_pt);  

    swap(parent_pt->color, grand_parent_pt->color);  

    pt = parent_pt;  

   }  

  }  

 

  /* Case : B  

  Parent of pt is right child of Grand-parent of pt */ 

  else 

  {  

   Node *uncle_pt = grand_parent_pt->left;  

 

   /* Case : 1  

    The uncle of pt is also red  

    Only Recoloring required */ 

   if ((uncle_pt != NULL) && (uncle_pt->color == RED))  

   {  

    grand_parent_pt->color = RED;  

    parent_pt->color = BLACK;  

    uncle_pt->color = BLACK;  

    pt = grand_parent_pt;  

   }  

   else 



 

 

   {  

    /* Case : 2  

    pt is left child of its parent  

    Right-rotation required */ 

    if (pt == parent_pt->left)  

    {  

     rotateRight(root, parent_pt);  

     pt = parent_pt;  

     parent_pt = pt->parent;  

    }  

 

    /* Case : 3  

    pt is right child of its parent  

    Left-rotation required */ 

    rotateLeft(root, grand_parent_pt);  

    swap(parent_pt->color, grand_parent_pt->color);  

    pt = parent_pt;  

   }  

  }  

 }  

 

 root->color = BLACK;  

}  

 

// Function to insert a new node with given data  

void RBTree::insert(const int &data)  

{  

 Node *pt = new Node(data);  

 

 // Do a normal BST insert  

 root = BSTInsert(root, pt);  

 

 // fix Red Black Tree violations  

 fixViolation(root, pt);  

}  

 

// Function to do inorder and level order traversals  

void RBTree::inorder()  { inorderHelper(root);}  

void RBTree::levelOrder() { levelOrderHelper(root); }  

 

// Driver Code  

int main()  

{  

 RBTree tree;  

 

 tree.insert(7);  

 tree.insert(6);  

 tree.insert(5);  

 tree.insert(4);  

 tree.insert(3);  



 

 

 tree.insert(2);  

 tree.insert(1);  

 

 cout << "Inoder Traversal of Created Tree\n";  

 tree.inorder();  

 

 cout << "\n\nLevel Order Traversal of Created Tree\n";  

 tree.levelOrder();  

 

 return 0;  

} 

 

Insertion Vs Deletion: 

Like Insertion, recoloring and rotations are used to maintain the Red-Black properties. 

In insert operation, we check color of uncle to decide the appropriate case. In delete operation, we check color of 

sibling to decide the appropriate case. 

The main property that violates after insertion is two consecutive reds. In delete, the main violated property is, 

change of black height in subtrees as deletion of a black node may cause reduced black height in one root to leaf 

path. 

Deletion is fairly complex process.  To understand deletion, notion of double black is used.  When a black node is 

deleted and replaced by a black child, the child is marked as double black. The main task now becomes to convert 

this double black to single black. 

Deletion Steps 

Following are detailed steps for deletion. 

1) Perform standard BST delete. When we perform standard delete operation in BST, we always end up deleting a 

node which is either leaf or has only one child (For an internal node, we copy the successor and then recursively call 

delete for successor, successor is always a leaf node or a node with one child). So we only need to handle cases 

where a node is leaf or has one child. Let v be the node to be deleted and u be the child that replaces v (Note that u 

is NULL when v is a leaf and color of NULL is considered as Black). 

2) Simple Case: If either u or v is red, we mark the replaced child as black (No change in black height). Note that 

both u and v cannot be red as v is parent of u and two consecutive reds are not allowed in red-black tree. 

 
3) If Both u and v are Black. 

3.1) Color u as double black.  Now our task reduces to convert this double black to single black. Note that If v is leaf, 

then u is NULL and color of NULL is considered as black. So the deletion of a black leaf also causes a double black. 



 

 

3.2) Do following while the current node u is double black and it is not root. Let sibling of node 

….(a): If sibling s is black and at least one of sibling’s children is

This case can be divided in four subcases depending upon positions of s and r.

…………..(i) Left Left Case (s is left child of 

of right right case shown in below diagram.

…………..(ii) Left Right Case (s is left child of its parent and r is right child). This is mirror of right left case shown in 

below diagram. 

…………..(iii) Right Right Case (s is right child of its parent and r is right child of s or both children of s are red)

 

…………..(iv) Right Left Case (s is right child of its parent and r is left child of s)

…..(b): If sibling is black and its both children are black

black. 

 
Do following while the current node u is double black and it is not root. Let sibling of node 

(a): If sibling s is black and at least one of sibling’s children is red, perform rotation(s). Let the red child of s be

This case can be divided in four subcases depending upon positions of s and r. 

Left Left Case (s is left child of its parent and r is left child of s or both children of s are red). This is mirror 

of right right case shown in below diagram. 

Left Right Case (s is left child of its parent and r is right child). This is mirror of right left case shown in 

Right Right Case (s is right child of its parent and r is right child of s or both children of s are red)

Right Left Case (s is right child of its parent and r is left child of s) 

th children are black, perform recoloring, and recur for the parent if parent is 

Do following while the current node u is double black and it is not root. Let sibling of node be s. 

, perform rotation(s). Let the red child of s be r. 

its parent and r is left child of s or both children of s are red). This is mirror 

Left Right Case (s is left child of its parent and r is right child). This is mirror of right left case shown in 

Right Right Case (s is right child of its parent and r is right child of s or both children of s are red) 

 

 
, perform recoloring, and recur for the parent if parent is 



 

 

In this case, if parent was red, then we didn’t need to recur for prent, we can simply make it black (red + double 

black = single black) 

…..(c): If sibling is red, perform a rotation to move old sibling up, recolor the old sibling and parent. The new sibling 

is always black (See the below diagram). This mainly converts the tree to black sibling case (by rotation) and

case (a) or (b). This case can be divided in two subcases.

…………..(i) Left Case (s is left child of its parent). This is mirror of right right case shown in below diagram. We right 

rotate the parent p. 

…………..(iii) Right Case (s is right child of its parent). We left rotate the parent p.

 

3.3) If u is root, make it single black and return (Black height of complete tree reduces by 1).

below is the C++ implementation of above approach:

#include <iostream>  

#include <queue>  

using namespace std;  

 

enum COLOR { RED, BLACK };  

 

class Node {  

public:  

int val;  

COLOR color;  

Node *left, *right, *parent;  

 

Node(int val) : val(val) {  

 parent = left = right = NULL;  

 

 // Node is created during insertion 

 // Node is red at insertion  

 color = RED;  

}  

In this case, if parent was red, then we didn’t need to recur for prent, we can simply make it black (red + double 

rform a rotation to move old sibling up, recolor the old sibling and parent. The new sibling 

is always black (See the below diagram). This mainly converts the tree to black sibling case (by rotation) and

in two subcases. 

Left Case (s is left child of its parent). This is mirror of right right case shown in below diagram. We right 

Right Case (s is right child of its parent). We left rotate the parent p. 

u is root, make it single black and return (Black height of complete tree reduces by 1).

below is the C++ implementation of above approach: 

// Node is created during insertion  

 
In this case, if parent was red, then we didn’t need to recur for prent, we can simply make it black (red + double 

rform a rotation to move old sibling up, recolor the old sibling and parent. The new sibling 

is always black (See the below diagram). This mainly converts the tree to black sibling case (by rotation) and  leads to 

Left Case (s is left child of its parent). This is mirror of right right case shown in below diagram. We right 

 
u is root, make it single black and return (Black height of complete tree reduces by 1). 



 

 

 

// returns pointer to uncle  

Node *uncle() {  

 // If no parent or grandparent, then no uncle  

 if (parent == NULL or parent->parent == NULL)  

 return NULL;  

 

 if (parent->isOnLeft())  

 // uncle on right  

 return parent->parent->right;  

 else 

 // uncle on left  

 return parent->parent->left;  

}  

 

// check if node is left child of parent  

bool isOnLeft() { return this == parent->left; }  

 

// returns pointer to sibling  

Node *sibling() {  

 // sibling null if no parent  

 if (parent == NULL)  

 return NULL;  

 

 if (isOnLeft())  

 return parent->right;  

 

 return parent->left;  

}  

 

// moves node down and moves given node in its place  

void moveDown(Node *nParent) {  

 if (parent != NULL) {  

 if (isOnLeft()) {  

  parent->left = nParent;  

 } else {  

  parent->right = nParent;  

 }  

 }  

 nParent->parent = parent;  

 parent = nParent;  

}  

 

bool hasRedChild() {  

 return (left != NULL and left->color == RED) or  

  (right != NULL and right->color == RED);  

}  

};  

 

class RBTree {  

Node *root;  

 

// left rotates the given node  

void leftRotate(Node *x) {  

 // new parent will be node's right child  



 

 

 Node *nParent = x->right;  

 

 // update root if current node is root  

 if (x == root)  

 root = nParent;  

 

 x->moveDown(nParent);  

 

 // connect x with new parent's left element  

 x->right = nParent->left;  

 // connect new parent's left element with node  

 // if it is not null  

 if (nParent->left != NULL)  

 nParent->left->parent = x;  

 

 // connect new parent with x  

 nParent->left = x;  

}  

 

void rightRotate(Node *x) {  

 // new parent will be node's left child  

 Node *nParent = x->left;  

 

 // update root if current node is root  

 if (x == root)  

 root = nParent;  

 

 x->moveDown(nParent);  

 

 // connect x with new parent's right element  

 x->left = nParent->right;  

 // connect new parent's right element with node  

 // if it is not null  

 if (nParent->right != NULL)  

 nParent->right->parent = x;  

 

 // connect new parent with x  

 nParent->right = x;  

}  

 

void swapColors(Node *x1, Node *x2) {  

 COLOR temp;  

 temp = x1->color;  

 x1->color = x2->color;  

 x2->color = temp;  

}  

 

void swapValues(Node *u, Node *v) {  

 int temp;  

 temp = u->val;  

 u->val = v->val;  

 v->val = temp;  

}  

 

// fix red red at given node  



 

 

void fixRedRed(Node *x) {  

 // if x is root color it black and return  

 if (x == root) {  

 x->color = BLACK;  

 return;  

 }  

 

 // initialize parent, grandparent, uncle  

 Node *parent = x->parent, *grandparent = parent->parent,  

  *uncle = x->uncle();  

 

 if (parent->color != BLACK) {  

 if (uncle != NULL && uncle->color == RED) {  

  // uncle red, perform recoloring and recurse  

  parent->color = BLACK;  

  uncle->color = BLACK;  

  grandparent->color = RED;  

  fixRedRed(grandparent);  

 } else {  

  // Else perform LR, LL, RL, RR  

  if (parent->isOnLeft()) {  

  if (x->isOnLeft()) {  

   // for left right  

   swapColors(parent, grandparent);  

  } else {  

   leftRotate(parent);  

   swapColors(x, grandparent);  

  }  

  // for left left and left right  

  rightRotate(grandparent);  

  } else {  

  if (x->isOnLeft()) {  

   // for right left  

   rightRotate(parent);  

   swapColors(x, grandparent);  

  } else {  

   swapColors(parent, grandparent);  

  }  

 

  // for right right and right left  

  leftRotate(grandparent);  

  }  

 }  

 }  

}  

 

// find node that do not have a left child  

// in the subtree of the given node  

Node *successor(Node *x) {  

 Node *temp = x;  

 

 while (temp->left != NULL)  

 temp = temp->left;  

 

 return temp;  



 

 

}  

 

// find node that replaces a deleted node in BST  

Node *BSTreplace(Node *x) {  

 // when node have 2 children  

 if (x->left != NULL and x->right != NULL)  

 return successor(x->right);  

 

 // when leaf  

 if (x->left == NULL and x->right == NULL)  

 return NULL;  

 

 // when single child  

 if (x->left != NULL)  

 return x->left;  

 else 

 return x->right;  

}  

 

// deletes the given node  

void deleteNode(Node *v) {  

 Node *u = BSTreplace(v);  

 

 // True when u and v are both black  

 bool uvBlack = ((u == NULL or u->color == BLACK) and (v->color == BLACK));  

 Node *parent = v->parent;  

 

 if (u == NULL) {  

 // u is NULL therefore v is leaf  

 if (v == root) {  

  // v is root, making root null  

  root = NULL;  

 } else {  

  if (uvBlack) {  

  // u and v both black  

  // v is leaf, fix double black at v  

  fixDoubleBlack(v);  

  } else {  

  // u or v is red  

  if (v->sibling() != NULL)  

   // sibling is not null, make it red"  

   v->sibling()->color = RED;  

  }  

 

  // delete v from the tree  

  if (v->isOnLeft()) {  

  parent->left = NULL;  

  } else {  

  parent->right = NULL;  

  }  

 }  

 delete v;  

 return;  

 }  

 



 

 

 if (v->left == NULL or v->right == NULL) {  

 // v has 1 child  

 if (v == root) {  

  // v is root, assign the value of u to v, and delete u  

  v->val = u->val;  

  v->left = v->right = NULL;  

  delete u;  

 } else {  

  // Detach v from tree and move u up  

  if (v->isOnLeft()) {  

  parent->left = u;  

  } else {  

  parent->right = u;  

  }  

  delete v;  

  u->parent = parent;  

  if (uvBlack) {  

  // u and v both black, fix double black at u  

  fixDoubleBlack(u);  

  } else {  

  // u or v red, color u black  

  u->color = BLACK;  

  }  

 }  

 return;  

 }  

 

 // v has 2 children, swap values with successor and recurse  

 swapValues(u, v);  

 deleteNode(u);  

}  

 

void fixDoubleBlack(Node *x) {  

 if (x == root)  

 // Reached root  

 return;  

 

 Node *sibling = x->sibling(), *parent = x->parent;  

 if (sibling == NULL) {  

 // No sibiling, double black pushed up  

 fixDoubleBlack(parent);  

 } else {  

 if (sibling->color == RED) {  

  // Sibling red  

  parent->color = RED;  

  sibling->color = BLACK;  

  if (sibling->isOnLeft()) {  

  // left case  

  rightRotate(parent);  

  } else {  

  // right case  

  leftRotate(parent);  

  }  

  fixDoubleBlack(x);  

 } else {  



 

 

  // Sibling black  

  if (sibling->hasRedChild()) {  

  // at least 1 red children  

  if (sibling->left != NULL and sibling->left->color == RED) {  

   if (sibling->isOnLeft()) {  

   // left left  

   sibling->left->color = sibling->color;  

   sibling->color = parent->color;  

   rightRotate(parent);  

   } else {  

   // right left  

   sibling->left->color = parent->color;  

   rightRotate(sibling);  

   leftRotate(parent);  

   }  

  } else {  

   if (sibling->isOnLeft()) {  

   // left right  

   sibling->right->color = parent->color;  

   leftRotate(sibling);  

   rightRotate(parent);  

   } else {  

   // right right  

   sibling->right->color = sibling->color;  

   sibling->color = parent->color;  

   leftRotate(parent);  

   }  

  }  

  parent->color = BLACK;  

  } else {  

  // 2 black children  

  sibling->color = RED;  

  if (parent->color == BLACK)  

   fixDoubleBlack(parent);  

  else 

   parent->color = BLACK;  

  }  

 }  

 }  

}  

 

// prints level order for given node  

void levelOrder(Node *x) {  

 if (x == NULL)  

 // return if node is null  

 return;  

 

 // queue for level order  

 queue<Node *> q;  

 Node *curr;  

 

 // push x  

 q.push(x);  

 

 while (!q.empty()) {  



 

 

 // while q is not empty  

 // dequeue  

 curr = q.front();  

 q.pop();  

 

 // print node value  

 cout << curr->val << " ";  

 

 // push children to queue  

 if (curr->left != NULL)  

  q.push(curr->left);  

 if (curr->right != NULL)  

  q.push(curr->right);  

 }  

}  

 

// prints inorder recursively  

void inorder(Node *x) {  

 if (x == NULL)  

 return;  

 inorder(x->left);  

 cout << x->val << " ";  

 inorder(x->right);  

}  

 

public:  

// constructor  

// initialize root  

RBTree() { root = NULL; }  

 

Node *getRoot() { return root; }  

 

// searches for given value  

// if found returns the node (used for delete)  

// else returns the last node while traversing (used in insert)  

Node *search(int n) {  

 Node *temp = root;  

 while (temp != NULL) {  

 if (n < temp->val) {  

  if (temp->left == NULL)  

  break;  

  else 

  temp = temp->left;  

 } else if (n == temp->val) {  

  break;  

 } else {  

  if (temp->right == NULL)  

  break;  

  else 

  temp = temp->right;  

 }  

 }  

 

 return temp;  

}  



 

 

// inserts the given value to tree  

void insert(int n) {  

 Node *newNode = new Node(n);  

 if (root == NULL) {  

 // when root is null  

 // simply insert value at root  

 newNode->color = BLACK;  

 root = newNode;  

 } else {  

 Node *temp = search(n);  

 

 if (temp->val == n) {  

  // return if value already exists  

  return;  

 }  

 

 // if value is not found, search returns the node  

 // where the value is to be inserted  

 

 // connect new node to correct node  

 newNode->parent = temp;  

 

 if (n < temp->val)  

  temp->left = newNode;  

 else 

  temp->right = newNode;  

 

 // fix red red voilaton if exists  

 fixRedRed(newNode);  

 }  

}  

 

// utility function that deletes the node with given value  

void deleteByVal(int n) {  

 if (root == NULL)  

 // Tree is empty  

 return;  

 

 Node *v = search(n), *u;  

 

 if (v->val != n) {  

 cout << "No node found to delete with value:" << n << endl;  

 return;  

 }  

 

 deleteNode(v);  

}  

 

// prints inorder of the tree  

void printInOrder() {  

 cout << "Inorder: " << endl;  

 if (root == NULL)  

 cout << "Tree is empty" << endl;  

 else 

 inorder(root);  



 

 

 cout << endl;  

}  

 

// prints level order of the tree  

void printLevelOrder() {  

 cout << "Level order: " << endl;  

 if (root == NULL)  

 cout << "Tree is empty" << endl;  

 else 

 levelOrder(root);  

 cout << endl;  

}  

};  

 

int main() {  

RBTree tree;  

 

tree.insert(7);  

tree.insert(3);  

tree.insert(18);  

tree.insert(10);  

tree.insert(22);  

tree.insert(8);  

tree.insert(11);  

tree.insert(26);  

tree.insert(2);  

tree.insert(6);  

tree.insert(13);  

 

tree.printInOrder();  

tree.printLevelOrder();  

 

cout<<endl<<"Deleting 18, 11, 3, 10, 22"<<endl;  

 

tree.deleteByVal(18);  

tree.deleteByVal(11);  

tree.deleteByVal(3);  

tree.deleteByVal(10);  

tree.deleteByVal(22);  

 

tree.printInOrder();  

tree.printLevelOrder();  

return 0;  

} 

 

Inorder:  

2 3 6 7 8 10 11 13 18 22 26  

Level order:  

10 7 18 3 8 11 22 2 6 13 26  

 

Deleting 18, 11, 3, 10, 22 



 

 

Inorder:  

2 6 7 8 13 26  

Level order:  

13 7 26 6 8 2  

Red Black Tree vs AVL Tree 
1. AVL trees provide faster lookups

2. Red Black Trees provide faster insertion and removal

due to relatively relaxed balancing.

3. AVL trees store balance factors or heights

whereas Red Black Tree requires only 1 bit of information per node.

4. Red Black Trees are used in most of the language libraries like

trees are used in databases where faster retrievals are required.

 

 

2-3 Trees 
2-3 tree is a tree data structure in which every internal node (non

children or two data elements and three children. If a node contains one data element

(children) namely left and middle. Whereas if a node contains two data elements

subtrees namely left, middle and right. 

 

The main advantage with 2-3 trees is that it is balanced in nature as opposed to a binary search tree whose height in 

the worst case can be O(n). Due to this, the worst case time

deletion is  O(log(n)) as the height of a 2

Search: To search a key K in given 2-3 tree

Base cases: 

1. If T is empty, return False (key cannot be found in the tree).

2. If current node contains data value which is equal

3. If we reach the leaf-node and it doesn’t contain the required key value

Recursive Calls: 

1. If K < currentNode.leftVal, we explore the left subtree of the current node.

2. Else if currentNode.leftVal < K < currentNode.rightVa

3. Else if K > currentNode.rightVal, we explore the right subtree of the current node.

 

Consider the following example: 

 

 

faster lookups than Red Black Trees because they are more strictly balanced.

faster insertion and removal operations than AVL trees as fewer rotations are done 

due to relatively relaxed balancing. 

balance factors or heights with each node, thus requires storage for an integer per node 

whereas Red Black Tree requires only 1 bit of information per node. 

Red Black Trees are used in most of the language libraries like map, multimap, multiset

where faster retrievals are required. 

3 tree is a tree data structure in which every internal node (non-leaf node) has either one data element and two 

two data elements and three children. If a node contains one data element leftVal

. Whereas if a node contains two data elements leftVal

 

3 trees is that it is balanced in nature as opposed to a binary search tree whose height in 

the worst case can be O(n). Due to this, the worst case time-complexity of operations such as search, insertion and 

-3 tree is O(log(n)) . 

3 tree T, we follow the following procedure: 

is empty, return False (key cannot be found in the tree). 

If current node contains data value which is equal to K, return True. 

node and it doesn’t contain the required key value K, return False.

< currentNode.leftVal, we explore the left subtree of the current node. 

< currentNode.rightVal, we explore the middle subtree of the current node.

> currentNode.rightVal, we explore the right subtree of the current node.

 

than Red Black Trees because they are more strictly balanced. 

operations than AVL trees as fewer rotations are done 

with each node, thus requires storage for an integer per node 

multiset in C++ whereas AVL 

leaf node) has either one data element and two 

leftVal, it has two subtrees 

leftVal and rightVal, it has three 

3 trees is that it is balanced in nature as opposed to a binary search tree whose height in 

s such as search, insertion and 

, return False. 

l, we explore the middle subtree of the current node. 

> currentNode.rightVal, we explore the right subtree of the current node. 



 

 

 

Insertion: There are 3 possible cases in insertion which have been discusse

Case 1: Insert in a node with only one data element

Case 2: Insert in a node with two data elements whose parent contains only one data element.

Case 3: Insert in a node with two data elements whose parent also contains two data elements.

 

There are 3 possible cases in insertion which have been discussed below: 

Insert in a node with only one data element 

 
Insert in a node with two data elements whose parent contains only one data element.

 

 
Insert in a node with two data elements whose parent also contains two data elements.

 

 

Insert in a node with two data elements whose parent contains only one data element. 

 

Insert in a node with two data elements whose parent also contains two data elements. 

 



 

 

 

 

 

 

 

 

B-Tree 
B- tree 

Type 

Time complexity in big O notation

 Average 

Space O(n) 

Search O(log n) 

Insert O(log n) 

Delete O(log n) 

 

 

B-Tree is a self-balancing search tree. In most of the other 

it is assumed that everything is in main memory. To understand the use of B

amount of data that cannot fit in main memory.

form of blocks. Disk access time is very high compared to main memory access time. The main idea of using B

is to reduce the number of disk accesses. Mos

O(h) disk accesses where h is the height of the tree. B

maximum possible keys in a B-Tree node. Generally, a B

low for B-Tree, total disk accesses for most of the operations are reduced significantly compared to balanced Binary 

Search Trees like AVL Tree, Red-Black Tree, ..etc.

 

In B-trees, internal (non-leaf) nodes 

can have a variable number of child 

nodes within some pre-defined range. 

When data is inserted or removed from 

a node, its number of child nodes 

changes. In order to maintain the 

pre-defined range, internal nodes may 

be joined or split. Because a range of 

child nodes is permitted, B-trees do not need re

maywaste some space, since nodes are not entirely full. The lower and upper bounds on the number of child nodes 

aretypically fixed for a particular implementation. For example, in a 2

tree),each internal node may have only 2 or 3 child nodes.

 

 

 

Tree 

Time complexity in big O notation 

Worst case 

O(n) 

O(log n) 

O(log n) 

O(log n) 

balancing search tree. In most of the other self-balancing search trees (like

it is assumed that everything is in main memory. To understand the use of B-Trees, we must think of the huge 

at cannot fit in main memory. When the number of keys is high, the data is read from disk in the 

form of blocks. Disk access time is very high compared to main memory access time. The main idea of using B

is to reduce the number of disk accesses. Most of the tree operations (search, insert, delete, max, min, ..etc ) require 

O(h) disk accesses where h is the height of the tree. B-tree is a fat tree. The height of B-Trees is kept low by putting 

Tree node. Generally, a B-Tree node size is kept equal to the disk block size. Since h is 

Tree, total disk accesses for most of the operations are reduced significantly compared to balanced Binary 

Black Tree, ..etc. 

 

trees do not need re-balancing as frequently as other self-balancing search trees, but 

maywaste some space, since nodes are not entirely full. The lower and upper bounds on the number of child nodes 

for a particular implementation. For example, in a 2-3 B-tree (often simply referred to as a 

),each internal node may have only 2 or 3 child nodes. 

 

balancing search trees (like AVL and Red-Black Trees), 

Trees, we must think of the huge 

When the number of keys is high, the data is read from disk in the 

form of blocks. Disk access time is very high compared to main memory access time. The main idea of using B-Trees 

t of the tree operations (search, insert, delete, max, min, ..etc ) require 

Trees is kept low by putting 

node size is kept equal to the disk block size. Since h is 

Tree, total disk accesses for most of the operations are reduced significantly compared to balanced Binary 

balancing search trees, but 

maywaste some space, since nodes are not entirely full. The lower and upper bounds on the number of child nodes 

tree (often simply referred to as a 2-3 



 

 

 

Variants 

The term B-tree may refer to a specific design or it may refer to a general class of designs. In the narrow sense, a 

B-tree stores keys in its internal nodes but need not store those keys in the records at the leaves. The general class 

includes variations such as the B+-tree and the B*-tree. 

• In the B+-tree, copies of the keys are stored in the internal nodes; the keys and records are stored in leaves; in 

addition, a leaf node may include a pointer to the next leaf node to speed sequential access.(Comer 1979, p. 129) 

• The B*-tree balances more neighboring internal nodes to keep the internal nodes more densely packed.(Comer 

1979, p. 129) This variant requires non-root nodes to be at least 2/3 full instead of 1/2. (Knuth 1998, p. 488) To 

maintain this, instead of immediately splitting up a node when it gets full, its keys are shared with a node next to 

it. When both nodes are full, then the two nodes are split into three. 

• Counted B-trees store, with each pointer within the tree, the number of nodes in the subtree below that 

pointer.[1] 

This allows rapid searches for the Nth record in key order, or counting the number of records between any two 

records, and various other related operations. 

 

 

 

 

The B-tree uses all those ideas 

The B-tree uses all of the above ideas: 

• It keeps records in sorted order for sequential traversing 

• It uses a hierarchical index to minimize the number of disk reads 

• It uses partially full blocks to speed insertions and deletions 

• The index is elegantly adjusted with a recursive algorithm 

In addition, a B-tree minimizes waste by making sure the interior nodes are at least ½ full. A B-tree can handle an 

arbitrary number of insertions and deletions. 

 

Definition 

According to Knuth's definition, a B-tree of order m (the maximum number of children for each node) is a tree which 

satisfies the following properties: 

1. Every node has at most m children. 

2. Every node (except root) has at least ⌈m⁄2⌉ children. 

3. The root has at least two children if it is not a leaf node. 

4. A non-leaf node with k children contains k−1 keys. 

5. All leaves appear in the same level, and carry information. 

Each internal node’s elements act as separation values which divide its subtrees. For example, if an internal node 

has 3 child nodes (or subtrees) then it must have 2 separation values or elements: a1 and a2. All values in the 

leftmost subtree will be less than a1, all values in the middle subtree will be between a1 and a2, and all values in the 

rightmost subtree will be greater than a2. 

 

Internal nodes 

Internal nodes are all nodes except for leaf nodes and the root node. They are usually represented as an ordered 

set of elements and child pointers. Every internal node contains a maximum of U children and a minimum of 

L children. Thus, the number of elements is always 1 less than the number of child pointers (the number of 

elements is between L−1 and U−1). U must be either 2L or 2L−1; therefore each internal node is at least half 

full. The relationship between U and L implies that two half-full nodes can be joined to make a legal node, and 

one full node can be split into two legal nodes (if there’s room to push one element up into the parent). These 

properties make it possible to delete and insert new values into a B-tree and adjust the tree to preserve the 

B-tree properties. 

The root node 

The root node’s number of children has the same upper limit as internal nodes, but has no lower limit. For 

example, when there are fewer than L−1 elements in the entire tree, the root will be the only node in the tree, 

with no children at all. 



 

 

Leaf nodes 

Leaf nodes have the same restriction on the number of elements, but have no children, and no child pointers. 

A B-tree of depth n+1 can hold about U times as many items as a B-tree of depth n, but the cost of search, insert, 

and delete operations grows with the depth of the tree. As with any balanced tree, the cost grows much more slowly 

than the number of elements. 

 

Search 
Searching is similar to searching a binary search tree. Starting at the root, the tree is recursively traversed from top 

to bottom. At each level, the search chooses the child pointer (subtree) whose separation values are on either side 

of the search value. Binary search is typically (but not necessarily) used within nodes to find the separation values 

and child tree of interest. 

Insertion 
A B Tree insertion example with eachiteration. The nodes of this B tree have at most 3 children (Knuth order 3). 

All insertions start at a leaf node. To insert a new element, search the tree to find the leaf node where the new 

element should be added. Insert the new element into that node with the following steps: 

 

1. If the node contains fewer than the maximum legal number of 

elements, then there is room for the new element. Insert the new 

element in the node, keeping the node's elements ordered. 

 

2. Otherwise the node is full, evenly split it into two nodes so: 

1. A single median is chosen from among the leaf's elements and the 

new element. 

2. Values less than the median are put in the new left node and values 

greater than the median are put in the new right node, with the 

median acting as a separation value. 

 

3. The separation value is inserted in the node's parent, which may 

cause it to be split, and so on. If the node has no parent (i.e., the 

node was the root), create a new root above this node (increasing 

the height of the tree). 

 

If the splitting goes all the way up to the root, it creates a new root with a 

single separator value and two children, which is why the lower bound on 

the size of internal nodes does not apply to the root. The maximum 

number of elements per node is U−1. When a node is split, one element 

moves to the parent, but one element is added. So, it must be possible to 

divide the maximum number U−1 of elements into two legal nodes. If 

this number is odd, then U=2L and one of the new nodes contains 

(U−2)/2 = L−1 elements, and hence is a legal node, and the other contains 

one more element, and hence it is legal too. If U−1 is even, then U=2L−1, 

so there are 2L−2 elements in the node. Half of this number is L−1, which 

is the minimum number of elements allowed per node. 

 

Deletion 

There are two popular strategies for deletion from a B-Tree. 

1. Locate and delete the item, then restructure the tree to regain its invariants, OR 

2. Do a single pass down the tree, but before entering (visiting) a node, restructure the tree so that once the key to 

be deleted is encountered, it can be deleted without triggering the need for any further restructuring 

 

The algorithm below uses the former strategy. 

There are two special cases to consider when deleting an element: 

1. The element in an internal node is a separator for its child nodes 

2. Deleting an element may put its node under the minimum number of elements and children 



 

 

The procedures for these cases are in order below. 

 

Deletion from a leaf node 

1. Search for the value to delete 

2. If the value's in a leaf node, simply delete it from the node 

3. If underflow happens, check siblings, and either transfer a key or fuse the siblings together 

4. If deletion happened from right child, retrieve the max value of left child if it has no underflow 

5. In vice-versa situation, retrieve the min element from right 

 

Deletion from an internal node 

1. If the value is in an internal node, choose a new separator (either the largest element in the left subtree or the 

smallest element in the right subtree), remove it from the leaf node it is in, and replace the element to be deleted 

with the new separator 

2. This has deleted an element from a leaf node, and so is now equivalent to the previous case 

 

Rebalancing after deletion 

1. If the right sibling has more than the minimum number of elements 

1. Add the separator to the end of the deficient node 

2. Replace the separator in the parent with the first element of the right sibling 

3. Append the first child of the right sibling as the last child of the deficient node 

2. Otherwise, if the left sibling has more than the minimum number of elements 

1. Add the separator to the start of the deficient node 

2. Replace the separator in the parent with the last element of the left sibling 

3. Insert the last child of the left sibling as the first child of the deficient node 

3. If both immediate siblings have only the minimum number of elements 

1. Create a new node with all the elements from the deficient node, all the elements from one of its siblings, 

and the separator in the parent between the two combined sibling nodes 

2. Remove the separator from the parent, and replace the two children it separated with the combined node 

3. If that brings the number of elements in the parent under the minimum, repeat these steps with that 

deficient node, unless it is the root, since the root is permitted to be deficient 

The only other case to account for is when the root has no elements and one child. In this case it is sufficient 

to replace it with its only child. 

 

We sketch how deletion works with various cases of deleting keys from a B-tree. 

1. If the key k is in node x and x is a leaf, delete the key k from x. 

2. If the key k is in node x and x is an internal node, do the following. 

    a) If the child y that precedes k in node x has at least t keys, then find the predecessor k0 of k in the sub-tree 

rooted at y. Recursively delete k0, and replace k by k0 in x. (We can find k0 and delete it in a single downward pass.) 

    b) If y has fewer than t keys, then, symmetrically, examine the child z that follows k in node x. If z has at least t 

keys, then find the successor k0 of k in the subtree rooted at z. Recursively delete k0, and replace k by k0 in x. (We 

can find k0 and delete it in a single downward pass.) 

     c) Otherwise, if both y and z have only t-1 keys, merge k and all of z into y, so that x loses both k and the pointer 

to z, and y now contains 2t-1 keys. Then free z and recursively delete k from y. 

3. If the key k is not present in internal node x, determine the root x.c(i) of the appropriate subtree that must contain 

k, if k is in the tree at all. If x.c(i) has only t-1 keys, execute step 3a or 3b as necessary to guarantee that we descend 

to a node containing at least t keys. Then finish by recursing on the appropriate child of x. 

    a) If x.c(i) has only t-1 keys but has an immediate sibling with at least t keys, give x.c(i) an extra key by moving a 

key from x down into x.c(i), moving a key from x.c(i) ’s immediate left or right sibling up into x, and moving the 

appropriate child pointer from the sibling into x.c(i). 

    b) If x.c(i) and both of x.c(i)’s immediate siblings have t-1 keys, merge x.c(i) with one sibling, which involves moving 

a key from x down into the new merged node to become the median key for that node. 

Since most of the keys in a B-tree are in the leaves, deletion operations are most often used to delete keys from 

leaves. The recursive delete procedure then acts in one downward pass through the tree, without having to back up. 

When deleting a key in an internal node, however, the procedure makes a downward pass through the tree but may 



 

 

have to return to the node from which the key was deleted to replace the key with its predecessor or successor 

(cases 2a and 2b). 

The following figures explain the deletion pro

 

 

have to return to the node from which the key was deleted to replace the key with its predecessor or successor 

The following figures explain the deletion process. 

have to return to the node from which the key was deleted to replace the key with its predecessor or successor 

 



 

 

 

 

 

B+ tree 
In computer science, a B+ tree is a 

type of tree which represents sorted 

data in a way that allows for efficient 

insertion, retrieval and removal of 

records, each of which is identified by 

a key. It is a dynamic, multilevel index, 

with maximum and minimum bounds 

on the number of keys in each index 

segment (usually called a "block" or 

"node"). In a B+ tree, in contrast to a 

B-tree, all records are stored at the leaf 

level of the tree; only keys are stored 

in interior nodes. 

 Node TypeNode TypeNode TypeNode Type    Children TypeChildren TypeChildren TypeChildren Type    MinMinMinMin
Root Node 

(when it is the 

only node in the 

tree) 

 

Records 1

Root Node  

 

 

Internal Nodes or 

Leaf 

Nodes 

2

Internal Node Internal Nodes or 

Leaf Nodes 

Cell

Leaf Node Records Floor(b/2)        

 MinMinMinMin    ChildrenChildrenChildrenChildren    MaxMaxMaxMax    ChildrenChildrenChildrenChildren    Example b =7Example b =7Example b =7Example b =7
1 b 1 - 7 

2 b 2 - 7 

Celling(b/2) b 4 - 7 
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2 - 100 

50 - 100 
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Function: search (k) 

return tree_search (k, root); 

Function: tree_search (k, node) 

if node is a leaf then 

return node; 

switch k do 

case k < k_0 

return tree_search(k, p_0); 

case k_i ≤ k < k_{i+1} 

return tree_search(k, p_i); 

case k_d ≤ k 

return tree_search(k, p_d); 
 

Insertion 

Perform a search to determine what bucket the new record should go into. 

• If the bucket is not full (at most b - 1 entries after the insertion), add the record. 

• Otherwise, split the bucket. 

• Allocate new leaf and move half the bucket's elements to the new bucket. 

• Insert the new leaf's smallest key and address into the parent. 

• If the parent is full, split it too. 

• Add the middle key to the parent node. 

• Repeat until a parent is found that need not split. 

• If the root splits, create a new root which has one key and two pointers. 

B-trees grow at the root and not at the leaves. 

Note that, for a non-leaf node split, we can simply push up the middle key (17). Contrast this with a leaf node split. 

 

 

Deletion 
• Start at root, find leaf L where entry belongs. 

• Remove the entry. 

• If L is at least half-full, done! 

• If L has fewer entries than it should, 

• Try to re-distribute, borrowing from sibling (adjacent node with same parent as L). 

• If re-distribution fails, merge L and sibling. 

• If merge occurred, must delete entry (pointing to L or sibling) from parent of L. 

• Merge could propagate to root, decreasing height. 

 

Characteristics 

For a b-order B+ tree with h levels of index:  

• The maximum number of records stored is 

 

 

• The minimum number of records stored is  

 

 

• The minimum number of keys is 

• The space required to store the tree is  

• Inserting a record requires  operations 

• Finding a record requires  operations 

• Removing a (previously located) record requires operations 



 

 

• Performing a range query with k elements occurring within the range requires 

• Performing a pagination query with page size 

 

Advantage – 

A B+ tree with ‘l’ levels can store more entries in its internal nodes compared to a B

This accentuates the significant improvement made to the search time for any given key. Having lesser levels and 

presence of Pnext pointers imply that B+ tree are very quick and efficient in accessing records from disks.

 

Segment Tree 
Let us consider the following problem to understand Segment Trees.

We have an array arr[0 . . . n-1]. We should be able to

1 Find the sum of elements from index l to r where 0 <= l <= r <= n

2 Change value of a specified element of the array to a new value x. We need to do arr[i] = x where 0 <= i <= n

 
A simple solution is to run a loop from l to r and calculate the sum of elements in the g

simply do arr[i] = x. The first operation takes O(n) time and the second operation takes O(1) time.

 

Another solution is to create another array and store sum from start to i at the ith index in this array. The sum of a 

given range can now be calculated in O(1) time, but update operation takes O(n) time now. This works well if the 

number of query operations is large and very few updates.

 

What if the number of query and updates are equal?

given the array? We can use a Segment Tree to do both operations in O(Logn) time.

 

 

 

Representation of Segment trees 

1. Leaf Nodes are the elements of the input array.

2. Each internal node represents some merging of the leaf nodes. The 

problems. For this problem, merging is sum of leaves under a node.

An array representation of tree is used to represent Segment Trees. For each node at index i, the left child is at index 

2*i+1, right child at 2*i+2 and the parent is at

How does above segment tree look in memory?

Like Heap, the segment tree is also represented as an array. The difference here is, it is not a complete binary tree. It 

is rather a full binary tree (every node has 0 or 2 children) and

Heap, the last level may have gaps between nodes. Below are the values in the segment tree array for the above 

diagram. 

Below is memory representation of segment tree for input array {1, 3, 5, 7
st[] = {36, 9, 27, 4, 5, 16, 11, 1, 3, DUMMY, DUMMY, 7, 9, DUMMY, DUMMY}
 

elements occurring within the range requires 

• Performing a pagination query with page size s and page number p requires 

A B+ tree with ‘l’ levels can store more entries in its internal nodes compared to a B-tree having the same ‘l’ levels. 

This accentuates the significant improvement made to the search time for any given key. Having lesser levels and 

pointers imply that B+ tree are very quick and efficient in accessing records from disks.

Let us consider the following problem to understand Segment Trees. 

1]. We should be able to 

lements from index l to r where 0 <= l <= r <= n-1 

Change value of a specified element of the array to a new value x. We need to do arr[i] = x where 0 <= i <= n

is to run a loop from l to r and calculate the sum of elements in the given range. To update a value, 

simply do arr[i] = x. The first operation takes O(n) time and the second operation takes O(1) time.

is to create another array and store sum from start to i at the ith index in this array. The sum of a 

range can now be calculated in O(1) time, but update operation takes O(n) time now. This works well if the 

number of query operations is large and very few updates. 

What if the number of query and updates are equal? Can we perform both the operations in 

We can use a Segment Tree to do both operations in O(Logn) time. 

Leaf Nodes are the elements of the input array. 

Each internal node represents some merging of the leaf nodes. The merging may be different for different 

problems. For this problem, merging is sum of leaves under a node. 

An array representation of tree is used to represent Segment Trees. For each node at index i, the left child is at index 

nd the parent is at . 

 
How does above segment tree look in memory? 

Like Heap, the segment tree is also represented as an array. The difference here is, it is not a complete binary tree. It 

is rather a full binary tree (every node has 0 or 2 children) and all levels are filled except possibly the last level. Unlike 

Heap, the last level may have gaps between nodes. Below are the values in the segment tree array for the above 

Below is memory representation of segment tree for input array {1, 3, 5, 7, 9, 11} 
st[] = {36, 9, 27, 4, 5, 16, 11, 1, 3, DUMMY, DUMMY, 7, 9, DUMMY, DUMMY} 

operations 

operations 

tree having the same ‘l’ levels. 

This accentuates the significant improvement made to the search time for any given key. Having lesser levels and 

pointers imply that B+ tree are very quick and efficient in accessing records from disks. 

Change value of a specified element of the array to a new value x. We need to do arr[i] = x where 0 <= i <= n-1. 

iven range. To update a value, 

simply do arr[i] = x. The first operation takes O(n) time and the second operation takes O(1) time. 

is to create another array and store sum from start to i at the ith index in this array. The sum of a 

range can now be calculated in O(1) time, but update operation takes O(n) time now. This works well if the 

Can we perform both the operations in O(log n) time once 

merging may be different for different 

An array representation of tree is used to represent Segment Trees. For each node at index i, the left child is at index 

Like Heap, the segment tree is also represented as an array. The difference here is, it is not a complete binary tree. It 

all levels are filled except possibly the last level. Unlike 

Heap, the last level may have gaps between nodes. Below are the values in the segment tree array for the above 

 



 

 

The dummy values are never accessed and have no use. This is some wastage of space due to simple array 

representation. We may optimize this wastage using some clever impleme

becomes more complex. 

Construction of Segment Tree from given array

We start with a segment arr[0 . . . n-1]. and every time we divide the current segment into two halves(if it has not 

yet become a segment of length 1), and then call the same procedure on both halves, and for each such segment, we 

store the sum in the corresponding node.

All levels of the constructed segment tree will be completely filled except the last level. Also, the tree will be a

Binary Tree because we always divide segments in two halves at every level. Since the constructed tree is always a 

full binary tree with n leaves, there will be n

that this does not include dummy nodes.

What is the total size of the array representing segment tree?

If n is a power of 2, then there are no dummy nodes. So the size of the segment tree is 2n

internal nodes. If n is not a power of 2, then the size of the tree will be 2*x 

greater than n. For example, when n = 10, then size of array representing segment tree is 2*16

An alternate explanation for size is based on heignt. Height of the segment tree will be

represented using array and relation between parent and child indexes must be maintained, size of memory 

allocated for segment tree will be 

Query for Sum of given range 

Once the tree is constructed, how to get the sum using the constructed segment tree. The following is the algorithm 

to get the sum of elements. 

int getSum(node, l, r)  

{ 

   if the range of the node is within l and r

        return value in the node

   else if the range of the node is completely outside l and r

        return 0 

   else 

    return getSum(node's left child, l, r) + 

           getSum(node's right child, l, r)

} 

Update a value 

Like tree construction and query operations, the upda

needs to be updated. Let diff be the value to be added. We start from the root of the segment tree and add

nodes which have given index in their range. If a node doesn’t have a given 

changes to that node. 

Implementation: 

Following is the implementation of segment tree. The program implements construction of segment tree for any 

given array. It also implements query and update operations.

 

// C program to show segment tree operations like construction, query 

// and update  

#include <stdio.h>  

#include <math.h>  

 

// A utility function to get the middle index from corner indexes. 

int getMid(int s, int e) { return s + (e -s)/2; } 

 

/* A recursive function to get the sum of values in given range 

The dummy values are never accessed and have no use. This is some wastage of space due to simple array 

representation. We may optimize this wastage using some clever implementations, but code for sum and update 

Construction of Segment Tree from given array 

1]. and every time we divide the current segment into two halves(if it has not 

, and then call the same procedure on both halves, and for each such segment, we 

store the sum in the corresponding node. 

All levels of the constructed segment tree will be completely filled except the last level. Also, the tree will be a

because we always divide segments in two halves at every level. Since the constructed tree is always a 

full binary tree with n leaves, there will be n-1 internal nodes. So the total number of nodes will be 2*n 

that this does not include dummy nodes. 

What is the total size of the array representing segment tree? 

If n is a power of 2, then there are no dummy nodes. So the size of the segment tree is 2n

internal nodes. If n is not a power of 2, then the size of the tree will be 2*x – 1 where x is the smallest power of 2 

greater than n. For example, when n = 10, then size of array representing segment tree is 2*16

e explanation for size is based on heignt. Height of the segment tree will be 

represented using array and relation between parent and child indexes must be maintained, size of memory 

. 

Once the tree is constructed, how to get the sum using the constructed segment tree. The following is the algorithm 

if the range of the node is within l and r 

he node 

else if the range of the node is completely outside l and r 

return getSum(node's left child, l, r) +  

getSum(node's right child, l, r) 

Like tree construction and query operations, the update can also be done recursively. We are given an index which 

be the value to be added. We start from the root of the segment tree and add

nodes which have given index in their range. If a node doesn’t have a given index in its range, we don’t make any 

Following is the implementation of segment tree. The program implements construction of segment tree for any 

given array. It also implements query and update operations. 

ram to show segment tree operations like construction, query  

// A utility function to get the middle index from corner indexes.  

s)/2; }  

tion to get the sum of values in given range  

The dummy values are never accessed and have no use. This is some wastage of space due to simple array 

ntations, but code for sum and update 

1]. and every time we divide the current segment into two halves(if it has not 

, and then call the same procedure on both halves, and for each such segment, we 

All levels of the constructed segment tree will be completely filled except the last level. Also, the tree will be a Full 

because we always divide segments in two halves at every level. Since the constructed tree is always a 

l nodes. So the total number of nodes will be 2*n – 1. Note 

If n is a power of 2, then there are no dummy nodes. So the size of the segment tree is 2n-1 (n leaf nodes and n-1) 

1 where x is the smallest power of 2 

greater than n. For example, when n = 10, then size of array representing segment tree is 2*16-1 = 31. 

. Since the tree is 

represented using array and relation between parent and child indexes must be maintained, size of memory 

Once the tree is constructed, how to get the sum using the constructed segment tree. The following is the algorithm 

 

te can also be done recursively. We are given an index which 

be the value to be added. We start from the root of the segment tree and add diff to all 

index in its range, we don’t make any 

Following is the implementation of segment tree. The program implements construction of segment tree for any 



 

 

 of the array. The following are parameters for this function.  

 

 st --> Pointer to segment tree  

 si --> Index of current node in the segment tree. Initially  

   0 is passed as root is always at index 0  

 ss & se --> Starting and ending indexes of the segment represented  

    by current node, i.e., st[si]  

 qs & qe --> Starting and ending indexes of query range */ 

int getSumUtil(int *st, int ss, int se, int qs, int qe, int si)  

{  

 // If segment of this node is a part of given range, then return  

 // the sum of the segment  

 if (qs <= ss && qe >= se)  

  return st[si];  

 

 // If segment of this node is outside the given range  

 if (se < qs || ss > qe)  

  return 0;  

 

 // If a part of this segment overlaps with the given range  

 int mid = getMid(ss, se);  

 return getSumUtil(st, ss, mid, qs, qe, 2*si+1) +  

  getSumUtil(st, mid+1, se, qs, qe, 2*si+2);  

}  

 

/* A recursive function to update the nodes which have the given  

index in their range. The following are parameters  

 st, si, ss and se are same as getSumUtil()  

 i --> index of the element to be updated. This index is  

   in the input array.  

diff --> Value to be added to all nodes which have i in range */ 

void updateValueUtil(int *st, int ss, int se, int i, int diff, int si)  

{  

 // Base Case: If the input index lies outside the range of  

 // this segment  

 if (i < ss || i > se)  

  return;  

 

 // If the input index is in range of this node, then update  

 // the value of the node and its children  

 st[si] = st[si] + diff;  

 if (se != ss)  

 {  

  int mid = getMid(ss, se);  

  updateValueUtil(st, ss, mid, i, diff, 2*si + 1);  

  updateValueUtil(st, mid+1, se, i, diff, 2*si + 2);  

 }  

}  

 

// The function to update a value in input array and segment tree.  

// It uses updateValueUtil() to update the value in segment tree  

void updateValue(int arr[], int *st, int n, int i, int new_val)  

{  

 // Check for erroneous input index  

 if (i < 0 || i > n-1)  



 

 

 {  

  printf("Invalid Input");  

  return;  

 }  

 

 // Get the difference between new value and old value  

 int diff = new_val - arr[i];  

 

 // Update the value in array  

 arr[i] = new_val;  

 

 // Update the values of nodes in segment tree  

 updateValueUtil(st, 0, n-1, i, diff, 0);  

}  

 

// Return sum of elements in range from index qs (quey start)  

// to qe (query end). It mainly uses getSumUtil()  

int getSum(int *st, int n, int qs, int qe)  

{  

 // Check for erroneous input values  

 if (qs < 0 || qe > n-1 || qs > qe)  

 {  

  printf("Invalid Input");  

  return -1;  

 }  

 

 return getSumUtil(st, 0, n-1, qs, qe, 0);  

}  

 

// A recursive function that constructs Segment Tree for array[ss..se].  

// si is index of current node in segment tree st  

int constructSTUtil(int arr[], int ss, int se, int *st, int si)  

{  

 // If there is one element in array, store it in current node of  

 // segment tree and return  

 if (ss == se)  

 {  

  st[si] = arr[ss];  

  return arr[ss];  

 }  

 

 // If there are more than one elements, then recur for left and  

 // right subtrees and store the sum of values in this node  

 int mid = getMid(ss, se);  

 st[si] = constructSTUtil(arr, ss, mid, st, si*2+1) +  

   constructSTUtil(arr, mid+1, se, st, si*2+2);  

 return st[si];  

}  

 

/* Function to construct segment tree from given array. This function  

allocates memory for segment tree and calls constructSTUtil() to  

fill the allocated memory */ 

int *constructST(int arr[], int n)  

{  

 // Allocate memory for the segment tree  



 

 

 

 //Height of segment tree  

 int x = (int)(ceil(log2(n)));  

 

 //Maximum size of segment tree  

 int max_size = 2*(int)pow(2, x) - 1;  

 

 // Allocate memory  

 int *st = new int[max_size];  

 

 // Fill the allocated memory st  

 constructSTUtil(arr, 0, n-1, st, 0);  

 

 // Return the constructed segment tree  

 return st;  

}  

 

// Driver program to test above functions  

int main()  

{  

 int arr[] = {1, 3, 5, 7, 9, 11};  

 int n = sizeof(arr)/sizeof(arr[0]);  

 

 // Build segment tree from given array  

 int *st = constructST(arr, n);  

 

 // Print sum of values in array from index 1 to 3  

 printf("Sum of values in given range = %dn",  

   getSum(st, n, 1, 3));  

 

 // Update: set arr[1] = 10 and update corresponding  

 // segment tree nodes  

 updateValue(arr, st, n, 1, 10);  

 

 // Find sum after the value is updated  

 printf("Updated sum of values in given range = %dn",  

   getSum(st, n, 1, 3));  

 return 0;  

} 

Output: 

  

Sum of values in given range = 15 

Updated sum of values in given range = 22 

Time Complexity: 

Time Complexity for tree construction is O(n). There are total 2n-1 nodes, and value of every node is calculated only 

once in tree construction. 

Time complexity to query is O(Logn). To query a sum, we process at most four nodes at every level and number of 

levels is O(Logn). 

The time complexity of update is also O(Logn). To update a leaf value, we process one node at every level and 

number of levels is O(Logn). 

 

We have introduced segment tree with a simple example in the previous post. In this post, Range Minimum 

Query problem is discussed as another example where Segment Tree can be used. Following is problem statement. 



 

 

We have an array arr[0 . . . n-1]. We should be able to efficiently find the minimum value from index

to qe (query end) where 0 <= qs <= qe <= n

 

A simple solution is to run a loop from qs

time in worst case. 

Another solution is to create a 2D array where an entry [i, j] stores the

a given range can now be calculated in O(1) time, but preprocessing takes O(n^2) time. Also, this approach needs 

O(n^2) extra space which may become huge for large input arrays.

Segment tree can be used to do preprocessing and query in moderate time. With segment tree, preprocessing time 

is O(n) and time to for range minimum query is O(Logn). The extra space requ

Representation of Segment trees 

1. Leaf Nodes are the elements of the input array.

2. Each internal node represents minimum of all leaves under it.

An array representation of tree is used to represent Segment Trees. 

2*i+1, right child at 2*i+2 and the parent is at

Construction of Segment Tree from given array

We start with a segment arr[0 . . . n-1]. and every time we divide the current segment into two halves(

yet become a segment of length 1), and then call the same procedure on both halves, and for each such segment, we 

store the minimum value in a segment tree node.

All levels of the constructed segment tree will be completely filled except the 

Binary Tree because we always divide segments in two halves at every level. Since the constructed tree is always full 

binary tree with n leaves, there will be n

Height of the segment tree will be 

and child indexes must be maintained, size of m

Query for minimum value of given range

Once the tree is constructed, how to do range minimum query using the constructed segment tree. Following is 

algorithm to get the minimum. 

 

// C program for range minimum query using segment tree 

#include <stdio.h>  

#include <math.h>  

#include <limits.h>  

 

// A utility function to get minimum of two numbers 

int minVal(int x, int y) { return (x < y)? x: y; } 

 

// A utility function to get the middle index from corner indexes

int getMid(int s, int e) { return s + (e -s)/2; } 

 

/* A recursive function to get the minimum value in a given range 

 of array indexes. The following are parameters for this function. 

1]. We should be able to efficiently find the minimum value from index

0 <= qs <= qe <= n-1. 

qs to qe and find minimum element in given range. This solution takes O(n) 

is to create a 2D array where an entry [i, j] stores the minimum value in range arr[i..j]. Minimum of 

a given range can now be calculated in O(1) time, but preprocessing takes O(n^2) time. Also, this approach needs 

O(n^2) extra space which may become huge for large input arrays. 

can be used to do preprocessing and query in moderate time. With segment tree, preprocessing time 

is O(n) and time to for range minimum query is O(Logn). The extra space required is O(n) to store the segment tree.

Leaf Nodes are the elements of the input array. 

Each internal node represents minimum of all leaves under it. 

An array representation of tree is used to represent Segment Trees. For each node at index i, the left child is at index 

2*i+1, right child at 2*i+2 and the parent is at . 

 
Construction of Segment Tree from given array 

1]. and every time we divide the current segment into two halves(

yet become a segment of length 1), and then call the same procedure on both halves, and for each such segment, we 

store the minimum value in a segment tree node. 

All levels of the constructed segment tree will be completely filled except the last level. Also, the tree will be a

because we always divide segments in two halves at every level. Since the constructed tree is always full 

nary tree with n leaves, there will be n-1 internal nodes. So total number of nodes will be 2*n 

. Since the tree is represented using array and relation between parent 

and child indexes must be maintained, size of memory allocated for segment tree will be

Query for minimum value of given range 

Once the tree is constructed, how to do range minimum query using the constructed segment tree. Following is 

ery using segment tree  

// A utility function to get minimum of two numbers  

int minVal(int x, int y) { return (x < y)? x: y; }  

// A utility function to get the middle index from corner indexes.  

s)/2; }  

/* A recursive function to get the minimum value in a given range  

of array indexes. The following are parameters for this function.  

1]. We should be able to efficiently find the minimum value from index qs (query start) 

and find minimum element in given range. This solution takes O(n) 

minimum value in range arr[i..j]. Minimum of 

a given range can now be calculated in O(1) time, but preprocessing takes O(n^2) time. Also, this approach needs 

can be used to do preprocessing and query in moderate time. With segment tree, preprocessing time 

ired is O(n) to store the segment tree. 

For each node at index i, the left child is at index 

1]. and every time we divide the current segment into two halves(if it has not 

yet become a segment of length 1), and then call the same procedure on both halves, and for each such segment, we 

last level. Also, the tree will be a Full 

because we always divide segments in two halves at every level. Since the constructed tree is always full 

1 internal nodes. So total number of nodes will be 2*n – 1. 

. Since the tree is represented using array and relation between parent 

emory allocated for segment tree will be . 

Once the tree is constructed, how to do range minimum query using the constructed segment tree. Following is 



 

 

 

 st --> Pointer to segment tree  

 index --> Index of current node in the segment tree. Initially  

   0 is passed as root is always at index 0  

 ss & se --> Starting and ending indexes of the segment represented  

    by current node, i.e., st[index]  

 qs & qe --> Starting and ending indexes of query range */ 

int RMQUtil(int *st, int ss, int se, int qs, int qe, int index)  

{  

 // If segment of this node is a part of given range, then return  

 // the min of the segment  

 if (qs <= ss && qe >= se)  

  return st[index];  

 

 // If segment of this node is outside the given range  

 if (se < qs || ss > qe)  

  return INT_MAX;  

 

 // If a part of this segment overlaps with the given range  

 int mid = getMid(ss, se);  

 return minVal(RMQUtil(st, ss, mid, qs, qe, 2*index+1),  

    RMQUtil(st, mid+1, se, qs, qe, 2*index+2));  

}  

// Return minimum of elements in range from index qs (quey start) to  

// qe (query end). It mainly uses RMQUtil()  

int RMQ(int *st, int n, int qs, int qe)  

{  

 // Check for erroneous input values  

 if (qs < 0 || qe > n-1 || qs > qe)  

 {  

  printf("Invalid Input");  

  return -1;  

 }  

 return RMQUtil(st, 0, n-1, qs, qe, 0);  

}  

// A recursive function that constructs Segment Tree for array[ss..se].  

// si is index of current node in segment tree st  

int constructSTUtil(int arr[], int ss, int se, int *st, int si)  

{  

 // If there is one element in array, store it in current node of  

 // segment tree and return  

 if (ss == se)  

 {  

  st[si] = arr[ss];  

  return arr[ss];  

 }  

 // If there are more than one elements, then recur for left and  

 // right subtrees and store the minimum of two values in this node  

 int mid = getMid(ss, se);  

 st[si] = minVal(constructSTUtil(arr, ss, mid, st, si*2+1),  

     constructSTUtil(arr, mid+1, se, st, si*2+2));  

 return st[si];  

}  

 

/* Function to construct segment tree from given array. This function  



 

 

allocates memory for segment tree and calls constructSTUtil() to  

fill the allocated memory */ 

int *constructST(int arr[], int n)  

{  

 // Allocate memory for segment tree  

 //Height of segment tree  

 int x = (int)(ceil(log2(n)));  

 

 // Maximum size of segment tree  

 int max_size = 2*(int)pow(2, x) - 1;  

 int *st = new int[max_size];  

 

 // Fill the allocated memory st  

 constructSTUtil(arr, 0, n-1, st, 0);  

 

 // Return the constructed segment tree  

 return st;  

}  

 

// Driver program to test above functions  

int main()  

{  

 int arr[] = {1, 3, 2, 7, 9, 11};  

 int n = sizeof(arr)/sizeof(arr[0]);  

 

 // Build segment tree from given array  

 int *st = constructST(arr, n);  

 

 int qs = 1; // Starting index of query range  

 int qe = 5; // Ending index of query range  

 

 // Print minimum value in arr[qs..qe]  

 printf("Minimum of values in range [%d, %d] is = %d\n",  

      qs, qe, RMQ(st, n, qs, qe));  

 

 return 0;  

} 

Minimum of values in range [1, 5] is = 2 

Time Complexity: 

Time Complexity for tree construction is O(n). There are total 2n-1 nodes, and value of every node is calculated only 

once in tree construction. 

Time complexity to query is O(Logn). To query a range minimum, we process at most two nodes at every level and 

number of levels is O(Logn). 

 

K Dimensional Tree 

A K-D Tree(also called as K-Dimensional Tree) is a binary search tree where data in each node is a K-Dimensional 

point in space. In short, it is a space partitioning(details below) data structure for organizing points in a K-

Dimensional space. 

 

A non-leaf node in K-D tree divides the space into two parts, called as half-spaces. 

Points to the left of this space are represented by the left subtree of that node and points to the right of the space 

are represented by the right subtree. We will soon be explaining the concept on how the space is divided and tree is 

formed. 

 



 

 

For the sake of simplicity, let us understand a 2

The root would have an x-aligned plane, the root’s children would both have y

grandchildren would all have x-aligned planes, and the root’s great

and so on. 

 

Generalization: 

Let us number the planes as 0, 1, 2, …(K 

will have A aligned plane where A is calculated as:

A = D mod K 

 

How to determine if a point will lie in the left subtree or in right subtree?

If the root node is aligned in planeA, then the left subtree will contain all points whose coordinate

smaller than that of root node. Similarly, the right subtree will contain all points whose coordinates in that plane are 

greater-equal to that of root node. 

 

Creation of a 2-D Tree: 

Consider following points in a 2-D plane:

(3, 6), (17, 15), (13, 15), (6, 12), (9, 1), (2, 7), (10, 19)

1. Insert (3, 6): Since tree is empty, make it the root node.

2. Insert (17, 15): Compare it with root node point. Since root node is X

compared to determine if it lies in 

3. Insert (13, 15): X-value of this point is greater than X

subtree of (3, 6). Again Compare Y

are equal, this point will lie in the right subtree of (17, 15). This point will be X

4. Insert (6, 12): X-value of this point is greater than X

subtree of (3, 6). Again Compare Y

15, this point will lie in the left subtree of (17, 15). This point will be X

5. Insert (9, 1):Similarly, this point will lie in the right of 

6. Insert (2, 7):Similarly, this point will lie in the left of (3, 6).

7. Insert (10, 19): Similarly, this point will lie in the left of (13, 15).

How is space partitioned? 

All 7 points will be plotted in the X-Y plane as follows:

1. Point (3, 6) will divide the space into two parts: Draw line X = 3.

 

For the sake of simplicity, let us understand a 2-D Tree with an example. 

aligned plane, the root’s children would both have y-aligned planes, the r

aligned planes, and the root’s great-grandchildren would all have y

Let us number the planes as 0, 1, 2, …(K – 1). From the above example, it is quite clear that a point (node)

will have A aligned plane where A is calculated as: 

How to determine if a point will lie in the left subtree or in right subtree? 

If the root node is aligned in planeA, then the left subtree will contain all points whose coordinate

smaller than that of root node. Similarly, the right subtree will contain all points whose coordinates in that plane are 

D plane: 

15), (13, 15), (6, 12), (9, 1), (2, 7), (10, 19) 

Insert (3, 6): Since tree is empty, make it the root node. 

Insert (17, 15): Compare it with root node point. Since root node is X-aligned, the X

compared to determine if it lies in the rightsubtree or in the right subtree. This point will be Y

value of this point is greater than X-value of point in root node. So, this will lie in the right 

subtree of (3, 6). Again Compare Y-value of this point with the Y-value of point (17, 15) (Why?). Since, they 

are equal, this point will lie in the right subtree of (17, 15). This point will be X-aligned.

value of this point is greater than X-value of point in root node. So, this will lie in the right 

btree of (3, 6). Again Compare Y-value of this point with the Y-value of point (17, 15) (Why?). Since, 12 < 

15, this point will lie in the left subtree of (17, 15). This point will be X-aligned. 

Insert (9, 1):Similarly, this point will lie in the right of (6, 12). 

Insert (2, 7):Similarly, this point will lie in the left of (3, 6). 

Insert (10, 19): Similarly, this point will lie in the left of (13, 15). 

 

Y plane as follows: 

vide the space into two parts: Draw line X = 3. 

 

aligned planes, the root’s 

grandchildren would all have y-aligned planes 

1). From the above example, it is quite clear that a point (node) at depth D 

If the root node is aligned in planeA, then the left subtree will contain all points whose coordinates in that plane are 

smaller than that of root node. Similarly, the right subtree will contain all points whose coordinates in that plane are 

aligned, the X-coordinate value will be 

the rightsubtree or in the right subtree. This point will be Y-aligned. 

value of point in root node. So, this will lie in the right 

alue of point (17, 15) (Why?). Since, they 

aligned. 

value of point in root node. So, this will lie in the right 

value of point (17, 15) (Why?). Since, 12 < 



 

 

 

Point (2, 7) will divide the space to the left of line X = 3 into two parts horizontally. 

Draw line Y = 7 to the left of line X = 3. 

 

 

Point (17, 15) will divide the space to the right of line X = 3 in

Draw line Y = 15 to the right of line X = 3.

 

 

Point (6, 12) will divide the space below line Y = 15 and to the right of line X = 3 into two parts.

Draw line X = 6 to the right of line X = 3 and below line Y = 15.

 

Point (13, 15) will divide the space below line Y = 15 and to the right of line X = 6 into two parts.

Draw line X = 13 to the right of line X = 6 and below line Y = 15.

 

Point (2, 7) will divide the space to the left of line X = 3 into two parts horizontally.  

 

Point (17, 15) will divide the space to the right of line X = 3 into two parts horizontally. 

Draw line Y = 15 to the right of line X = 3. 

 

Point (6, 12) will divide the space below line Y = 15 and to the right of line X = 3 into two parts.

Draw line X = 6 to the right of line X = 3 and below line Y = 15. 

 

15) will divide the space below line Y = 15 and to the right of line X = 6 into two parts.

Draw line X = 13 to the right of line X = 6 and below line Y = 15. 

Point (6, 12) will divide the space below line Y = 15 and to the right of line X = 3 into two parts. 

15) will divide the space below line Y = 15 and to the right of line X = 6 into two parts. 



 

 

Point (9, 1) will divide the space between lines X = 3, X = 6 and Y = 15 into two parts.

Draw line Y = 1 between lines X = 3 and X = 6.

 

 

Point (10, 19) will divide the space to the right of line X = 3 and above line Y = 15 into two parts.

Draw line Y = 19 to the right of line X = 3 and above line Y = 15.

 

 

Following is C++ implementation of KD Tree basic operations like search, insert and delete.

// A C++ program to demonstrate operations of KD tree 

#include<bits/stdc++.h>  

using namespace std;  

 

const int k = 2;  

 

// A structure to represent node of kd tree 

struct Node  

{  

 int point[k]; // To store k dimensional point 

 Node *left, *right;  

};  

 

 
Point (9, 1) will divide the space between lines X = 3, X = 6 and Y = 15 into two parts. 

line Y = 1 between lines X = 3 and X = 6. 

 

Point (10, 19) will divide the space to the right of line X = 3 and above line Y = 15 into two parts.

Draw line Y = 19 to the right of line X = 3 and above line Y = 15. 

 

Tree basic operations like search, insert and delete.

// A C++ program to demonstrate operations of KD tree  

// A structure to represent node of kd tree  

To store k dimensional point  

Point (10, 19) will divide the space to the right of line X = 3 and above line Y = 15 into two parts. 

Tree basic operations like search, insert and delete. 



 

 

// A method to create a node of K D tree  

struct Node* newNode(int arr[])  

{  

 struct Node* temp = new Node;  

 

 for (int i=0; i<k; i++)  

 temp->point[i] = arr[i];  

 

 temp->left = temp->right = NULL;  

 return temp;  

}  

 

// Inserts a new node and returns root of modified tree  

// The parameter depth is used to decide axis of comparison  

Node *insertRec(Node *root, int point[], unsigned depth)  

{  

 // Tree is empty?  

 if (root == NULL)  

 return newNode(point);  

 

 // Calculate current dimension (cd) of comparison  

 unsigned cd = depth % k;  

 

 // Compare the new point with root on current dimension 'cd'  

 // and decide the left or right subtree  

 if (point[cd] < (root->point[cd]))  

  root->left = insertRec(root->left, point, depth + 1);  

 else 

  root->right = insertRec(root->right, point, depth + 1);  

 

 return root;  

}  

 

// Function to insert a new point with given point in  

// KD Tree and return new root. It mainly uses above recursive  

// function "insertRec()"  

Node* insert(Node *root, int point[])  

{  

 return insertRec(root, point, 0);  

}  

 

// A utility method to determine if two Points are same  

// in K Dimensional space  

bool arePointsSame(int point1[], int point2[])  

{  

 // Compare individual pointinate values  

 for (int i = 0; i < k; ++i)  

  if (point1[i] != point2[i])  

   return false;  

 

 return true;  

}  

 

// Searches a Point represented by "point[]" in the K D tree.  

// The parameter depth is used to determine current axis.  



 

 

bool searchRec(Node* root, int point[], unsigned depth)  

{  

 // Base cases  

 if (root == NULL)  

  return false;  

 if (arePointsSame(root->point, point))  

  return true;  

 

 // Current dimension is computed using current depth and total  

 // dimensions (k)  

 unsigned cd = depth % k;  

 

 // Compare point with root with respect to cd (Current dimension)  

 if (point[cd] < root->point[cd])  

  return searchRec(root->left, point, depth + 1);  

 

 return searchRec(root->right, point, depth + 1);  

}  

 

// Searches a Point in the K D tree. It mainly uses  

// searchRec()  

bool search(Node* root, int point[])  

{  

 // Pass current depth as 0  

 return searchRec(root, point, 0);  

}  

 

// Driver program to test above functions  

int main()  

{  

 struct Node *root = NULL;  

 int points[][k] = {{3, 6}, {17, 15}, {13, 15}, {6, 12},  

     {9, 1}, {2, 7}, {10, 19}};  

 

 int n = sizeof(points)/sizeof(points[0]);  

 

 for (int i=0; i<n; i++)  

 root = insert(root, points[i]);  

 

 int point1[] = {10, 19};  

 (search(root, point1))? cout << "Found\n": cout << "Not Found\n";  

 

 int point2[] = {12, 19};  

 (search(root, point2))? cout << "Found\n": cout << "Not Found\n";  

 

 return 0;  

} 

 

The operation is to find minimum in the given dimension. This is especially needed in delete operation. 

For example, consider below KD Tree, if given dimension is x, then output should be 5 and if given dimensions is y, 

then output should be 12. 



 

 

In KD tree, points are divided dimension by dimension. For example, root divides keys by dimension 0, level next to 

root divides by dimension 1, next level by dimension 2 if k is more then 2 (else by dimension 0), and so on.

 

To find minimum we traverse nodes starting from root.

then required minimum lies on left side if there is left child

Above is simple, what to do when current level’s dimension is different.

different, minimum may be either in left subtree or right subtree or current node may also be minimum

take minimum of three and return. This is different from Binary Search tree.

 

The operation is to delete a given point from K D Tree.

Like Binary Search Tree Delete, we recursively traverse down and search for the point to be deleted. Below are steps 

are followed for every node visited. 

1) If current node contains the point to be deleted

a. If node to be deleted is a leaf node, simply delete it (Same as

b. If node to be deleted has right child as not NULL (Different from BST)

1) Find minimum of current node’s dimension in right

2) Replace the node with above found minimum and recursively delete minimum in right subtree.

c. Else If node to be deleted has left child as not NULL (Different from BST)

1) Find minimum of current node’s dimension in left subtree.

2)Replace the node with above found minimum and recursively delete minimum in left subtree.

3)Make new left subtree as right child of current node.

 

2) If current doesn’t contain the point to be deleted

a. If node to be deleted is smaller than current node on current dimension,

b. Else recur for right subtree. 

 

Why 1.b and 1.c are different from BST?

In BST delete, if a node’s left child is empty and right is not empty, we replace the node with right child. In K D Tree, 

doing this would violate the KD tree property as dimension of right child of node is different from node’s dimension. 

For example, if node divides point by x axis values. then its children divide by y axis, so we can’t simply replace node 

with right child. Same is true for the case when right 

Why 1.c doesn’t find max in left subtree and recur for max like 1.b?

Doing this violates the property that all equal values are in right subtree. For example, if we delete (!0, 10) in below 

subtree and replace if with 

 

Wrong Way (Equal key in left subtree after deletion)

            (5, 6)                             (4, 10)

             /              Delete(5, 6)         /  

        (4, 10)            ------------

             \ 

 
In KD tree, points are divided dimension by dimension. For example, root divides keys by dimension 0, level next to 

level by dimension 2 if k is more then 2 (else by dimension 0), and so on.

To find minimum we traverse nodes starting from root. If dimension of current level is same as given dimension, 

then required minimum lies on left side if there is left child. This is same as Binary Search Tree Minimum

Above is simple, what to do when current level’s dimension is different. When dimension of current level is 

nimum may be either in left subtree or right subtree or current node may also be minimum

take minimum of three and return. This is different from Binary Search tree. 

The operation is to delete a given point from K D Tree. 

we recursively traverse down and search for the point to be deleted. Below are steps 

1) If current node contains the point to be deleted 

to be deleted is a leaf node, simply delete it (Same as BST Delete) 

If node to be deleted has right child as not NULL (Different from BST) 

Find minimum of current node’s dimension in right subtree. 

Replace the node with above found minimum and recursively delete minimum in right subtree.

Else If node to be deleted has left child as not NULL (Different from BST) 

Find minimum of current node’s dimension in left subtree. 

with above found minimum and recursively delete minimum in left subtree.

Make new left subtree as right child of current node. 

2) If current doesn’t contain the point to be deleted 

If node to be deleted is smaller than current node on current dimension, recur for left subtree.

Why 1.b and 1.c are different from BST? 

In BST delete, if a node’s left child is empty and right is not empty, we replace the node with right child. In K D Tree, 

roperty as dimension of right child of node is different from node’s dimension. 

For example, if node divides point by x axis values. then its children divide by y axis, so we can’t simply replace node 

with right child. Same is true for the case when right child is not empty and left child is empty.

Why 1.c doesn’t find max in left subtree and recur for max like 1.b? 

Doing this violates the property that all equal values are in right subtree. For example, if we delete (!0, 10) in below 

Wrong Way (Equal key in left subtree after deletion) 

(5, 6)                             (4, 10) 

/              Delete(5, 6)         /   

------------>     (4, 20) 

In KD tree, points are divided dimension by dimension. For example, root divides keys by dimension 0, level next to 

level by dimension 2 if k is more then 2 (else by dimension 0), and so on. 

If dimension of current level is same as given dimension, 

Binary Search Tree Minimum. 

When dimension of current level is 

nimum may be either in left subtree or right subtree or current node may also be minimum. So we 

we recursively traverse down and search for the point to be deleted. Below are steps 

Replace the node with above found minimum and recursively delete minimum in right subtree. 

with above found minimum and recursively delete minimum in left subtree. 

recur for left subtree. 

In BST delete, if a node’s left child is empty and right is not empty, we replace the node with right child. In K D Tree, 

roperty as dimension of right child of node is different from node’s dimension. 

For example, if node divides point by x axis values. then its children divide by y axis, so we can’t simply replace node 

child is not empty and left child is empty. 

Doing this violates the property that all equal values are in right subtree. For example, if we delete (!0, 10) in below 



 

 

           (4, 20)  

 

Right way (Equal key in right subtree after deletion)

             (5, 6)                          (4, 10)

             /              Delete(5, 6)           

         (4, 10)            ------------

              \ 

             (4, 20)  

 

Delete (30, 40): Since right child is not NULL and dimension of node is x, we find the node with minimum x value in 

right child. The node is (35, 45), we replace (30, 40) with (35, 45) and delete (35, 45).

 

Delete (70, 70): Dimension of node is y. Sinc

The node is (50, 30), we replace (70, 70) with (50, 30) and recursively delete (50, 30) in left subtree. Finally we make 

the modified left subtree as right subtree of (50, 30).

 

// A C++ program to demonstrate delete in K D tree 

#include<bits/stdc++.h>  

using namespace std;  

 

const int k = 2;  

 

// A structure to represent node of kd tree 

struct Node  

{  

 int point[k]; // To store k dimensional point 

 Node *left, *right;  

Right way (Equal key in right subtree after deletion) 

(5, 6)                          (4, 10) 

/              Delete(5, 6)           \ 

------------>         (4, 20) 

Delete (30, 40): Since right child is not NULL and dimension of node is x, we find the node with minimum x value in 

right child. The node is (35, 45), we replace (30, 40) with (35, 45) and delete (35, 45). 

 

Delete (70, 70): Dimension of node is y. Since right child is NULL, we find the node with minimum y value in left child. 

The node is (50, 30), we replace (70, 70) with (50, 30) and recursively delete (50, 30) in left subtree. Finally we make 

the modified left subtree as right subtree of (50, 30). 

// A C++ program to demonstrate delete in K D tree  

// A structure to represent node of kd tree  

int point[k]; // To store k dimensional point  

Delete (30, 40): Since right child is not NULL and dimension of node is x, we find the node with minimum x value in 

e right child is NULL, we find the node with minimum y value in left child. 

The node is (50, 30), we replace (70, 70) with (50, 30) and recursively delete (50, 30) in left subtree. Finally we make 

 



 

 

};  

 

// A method to create a node of K D tree  

struct Node* newNode(int arr[])  

{  

 struct Node* temp = new Node;  

 

 for (int i=0; i<k; i++)  

  temp->point[i] = arr[i];  

 

 temp->left = temp->right = NULL;  

 return temp;  

}  

 

// Inserts a new node and returns root of modified tree  

// The parameter depth is used to decide axis of comparison  

Node *insertRec(Node *root, int point[], unsigned depth)  

{  

 // Tree is empty?  

 if (root == NULL)  

  return newNode(point);  

 

 // Calculate current dimension (cd) of comparison  

 unsigned cd = depth % k;  

 

 // Compare the new point with root on current dimension 'cd'  

 // and decide the left or right subtree  

 if (point[cd] < (root->point[cd]))  

  root->left = insertRec(root->left, point, depth + 1);  

 else 

  root->right = insertRec(root->right, point, depth + 1);  

 

 return root;  

}  

 

// Function to insert a new point with given point in  

// KD Tree and return new root. It mainly uses above recursive  

// function "insertRec()"  

Node* insert(Node *root, int point[])  

{  

 return insertRec(root, point, 0);  

}  

 

// A utility function to find minimum of three integers  

Node *minNode(Node *x, Node *y, Node *z, int d)  

{  

 Node *res = x;  

 if (y != NULL && y->point[d] < res->point[d])  

 res = y;  

 if (z != NULL && z->point[d] < res->point[d])  

 res = z;  

 return res;  

}  

 

// Recursively finds minimum of d'th dimension in KD tree  



 

 

// The parameter depth is used to determine current axis.  

Node *findMinRec(Node* root, int d, unsigned depth)  

{  

 // Base cases  

 if (root == NULL)  

  return NULL;  

 

 // Current dimension is computed using current depth and total  

 // dimensions (k)  

 unsigned cd = depth % k;  

 

 // Compare point with root with respect to cd (Current dimension)  

 if (cd == d)  

 {  

  if (root->left == NULL)  

   return root;  

  return findMinRec(root->left, d, depth+1);  

 }  

 

 // If current dimension is different then minimum can be anywhere  

 // in this subtree  

 return minNode(root,  

   findMinRec(root->left, d, depth+1),  

   findMinRec(root->right, d, depth+1), d);  

}  

 

// A wrapper over findMinRec(). Returns minimum of d'th dimension  

Node *findMin(Node* root, int d)  

{  

 // Pass current level or depth as 0  

 return findMinRec(root, d, 0);  

}  

 

// A utility method to determine if two Points are same  

// in K Dimensional space  

bool arePointsSame(int point1[], int point2[])  

{  

 // Compare individual pointinate values  

 for (int i = 0; i < k; ++i)  

  if (point1[i] != point2[i])  

   return false;  

 

 return true;  

}  

 

// Copies point p2 to p1  

void copyPoint(int p1[], int p2[])  

{  

for (int i=0; i<k; i++)  

 p1[i] = p2[i];  

}  

 

// Function to delete a given point 'point[]' from tree with root  

// as 'root'. depth is current depth and passed as 0 initially.  

// Returns root of the modified tree.  



 

 

Node *deleteNodeRec(Node *root, int point[], int depth)  

{  

 // Given point is not present  

 if (root == NULL)  

  return NULL;  

 

 // Find dimension of current node  

 int cd = depth % k;  

 

 // If the point to be deleted is present at root  

 if (arePointsSame(root->point, point))  

 {  

  // 2.b) If right child is not NULL  

  if (root->right != NULL)  

  {  

   // Find minimum of root's dimension in right subtree  

   Node *min = findMin(root->right, cd);  

 

   // Copy the minimum to root  

   copyPoint(root->point, min->point);  

 

   // Recursively delete the minimum  

   root->right = deleteNodeRec(root->right, min->point, depth+1);  

  }  

  else if (root->left != NULL) // same as above  

  {  

   Node *min = findMin(root->left, cd);  

   copyPoint(root->point, min->point);  

   root->right = deleteNodeRec(root->left, min->point, depth+1);  

  }  

  else // If node to be deleted is leaf node  

  {  

   delete root;  

   return NULL;  

  }  

  return root;  

 }  

 

 // 2) If current node doesn't contain point, search downward  

 if (point[cd] < root->point[cd])  

  root->left = deleteNodeRec(root->left, point, depth+1);  

 else 

  root->right = deleteNodeRec(root->right, point, depth+1);  

 return root;  

}  

 

// Function to delete a given point from K D Tree with 'root'  

Node* deleteNode(Node *root, int point[])  

{  

// Pass depth as 0  

return deleteNodeRec(root, point, 0);  

}  

 

// Driver program to test above functions  

int main()  



 

 

{  

 struct Node *root = NULL;  

 int points[][k] = {{30, 40}, {5, 25}, {70, 70},  

     {10, 12}, {50, 30}, {35, 45}};  

 

 int n = sizeof(points)/sizeof(points[0]);  

 

 for (int i=0; i<n; i++)  

  root = insert(root, points[i]);  

 

 // Delet (30, 40);  

 root = deleteNode(root, points[0]);  

 

 cout << "Root after deletion of (30, 40)\n";  

 cout << root->point[0] << ", " << root->point[1] << endl;  

 

 return 0;  

} 

Root after deletion of (30, 40) 

35, 45 

 


