Artificial Neutral Networks

What are Artificial Neural Networks (ANNs)?
The inventor of the first neuro computer, Dr. Robert Hecht-Nielsen, defines a neural network as —

"...a computing system made up of a number of simple, highly interconnected processing elements,
which process information by their dynamic state response to external inputs.”

The idea of ANNs is based on the belief that working of human brain by making the right connections, can be
imitated using silicon and wires as living neurons and dendrites.

The human brain is composed of 86 billion nerve cells called neurons. They are connected to other thousand cells
by Axons. Stimuli from external environment or inputs from sensory organs are accepted by dendrites. These inputs
create electric impulses, which quickly travel through the neural network. A neuron can then send the message to
other neuron to handle the issue or does not send it forward.
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Artificial Neural Network (ANN) is an efficient computing system whose central theme is borrowed from the analogy
of biological neural networks. ANNs are also named as “artificial neural systems,” or “parallel distributed processing
systems,” or “connectionist systems.” ANN acquires a large collection of units that are interconnected in some
pattern to allow communication between the units. These units, also referred to as nodes or neurons, are simple
processors which operate in parallel.

Every neuron is connected with other neuron through a connection link. Each connection link is associated with a
weight that has information about the input signal. This is the most useful information for neurons to solve a
particular problem because the weight usually excites or inhibits the signal that is being communicated. Each neuron
has an internal state, which is called an activation signal. Output signals, which are produced after combining the
input signals and activation rule, may be sent to other units.

ANNSs are composed of multiple nodes, which imitate biological neurons of human brain. The neurons are connected
by links and they interact with each other. The nodes can take input data and perform simple operations on the data.
The result of these operations is passed to other neurons. The output at each node is called its activation or node

value.Each link is associated with weight. ANNs are capable of learning, which takes place by altering weight values.

A Brief History of ANN

The history of ANN can be divided into the following three eras -
ANN during 1940s to 1960s

Some key developments of this era are as follows -



e 1943 - It has been assumed that the concept of neural network started with the work of physiologist,
Warren McCulloch, and mathematician, Walter Pitts, when in 1943 they modeled a simple neural network
using electrical circuits in order to describe how neurons in the brain might work.

e 1949 - Donald Hebb’s book, The Organization of Behavior, put forth the fact that repeated activation of one
neuron by another increases its strength each time they are used.

e 1956 - An associative memory network was introduced by Taylor.

e 1958 - A learning method for McCulloch and Pitts neuron model named Perceptron was invented by
Rosenblatt.

e 1960 - Bernard Widrow and Marcian Hoff developed models called "ADALINE" and “MADALINE.”

ANN during 1960s to 1980s
Some key developments of this era are as follows -
e 1961 - Rosenblatt made an unsuccessful attempt but proposed the “backpropagation” scheme for
multilayer networks.
e 1964 - Taylor constructed a winner-take-all circuit with inhibitions among output units.
e 1969 - Multilayer perceptron (MLP) was invented by Minsky and Papert.
e 1971 - Kohonen developed Associative memories.
e 1976 - Stephen Grossberg and Gail Carpenter developed Adaptive resonance theory.

ANN from 1980s till Present

Some key developments of this era are as follows -

1982 - The major development was Hopfield’s Energy approach.

1985 - Boltzmann machine was developed by Ackley, Hinton, and Sejnowski.
1986 — Rumelhart, Hinton, and Williams introduced Generalised Delta Rule.

e 1988 - Kosko developed Binary Associative Memory (BAM) and also gave the concept of Fuzzy Logic in ANN.
The historical review shows that significant progress has been made in this field. Neural network based chips are
emerging and applications to complex problems are being developed. Surely, today is a period of transition for
neural network technology.

Biological Neuron
A nerve cell (neuron) is a special biological cell that processes information. According to an estimation, there are
huge number of neurons, approximately 10™ with numerous interconnections, approximately 10%.
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As shown in the above diagram, a typical neuron consists of the following four parts with the help of which we can
explain its working -
e Dendrites - They are tree-like branches, responsible for receiving the information from other neurons it is
connected to. In other sense, we can say that they are like the ears of neuron.
e Soma - ltis the cell body of the neuron and is responsible for processing of information, they have received
from dendrites.

e Axon - ltis just like a cable through which neurons send the information.



e Synapses - It is the connection between the axon and other neuron dendrites.

Difference between Biological Neurons and Artificial Neurons?

Before taking a look at the differences between Artificial Neural Network (ANN) and Biological Neural Network
(BNN), let us take a look at the similarities based on the terminology between these two.

Biological Neural Network (BNN)

Artificial Neural Network (ANN)

ANN

Massively parallel, fast but inferior
than BNN

10” to 10* nodes (mainly depends
on the type of application and
network designer)

Soma Node

Dendrites Input

Synapse Weights or Interconnections

Axon Output

Criteria BNN

Processing Massively parallel, slow but superior than
ANN

Size 10" neurons and 10" interconnections

Learning They can tolerate ambiguity

Fault tolerance
damage

Storage capacity

Performance degrades with even partial

Stores the information in the synapse

Very precise, structured and
formatted data is required to
tolerate ambiguity

It is capable of robust performance,
hence has the potential to be fault
tolerant

Stores the information in
continuous memory locations

Major components: Axions, Dendrites,
Synapse

Information from other neurons, in the form
of electrical impulses, enters the dendrites at
connection points called synapses. The
information flows from the dendrites to the
cell where it is processed. The output signal, a
train of impulses, is then sent down the axon
to the synapse of other neurons.

Major Components: Nodes, Inputs, Outputs,
Weights, Bias

The arrangements and connections of the neurons
made up the network and have three layers. The
first layer is called the input layer and is the only
layer exposed to external signals. The input layer
transmits signals to the neurons in the next layer,
which is called a hidden layer. The hidden layer
extracts relevant features or patterns from the
received signals. Those features or patterns that
are considered important are then directed to the
output layer, which is the final layer of the
network.



A synapse is able to increase or decrease the
strength of the connection. This is where
information is stored.

Approx 10" neurons.

The artificial signals can be changed by weights in
a manner similar to the physical changes that
occur in the synapses.

102~ 10" neurons with current technology

Difference between the human brain and computers in terms of how information is processed.

The human brain works asynchronously

Biological Neurons compute slowly (several
ms per computation)

The brain represents information in a
distributed way because neurons are
unreliable and could die any time.

Our brain changes their connectivity over time
to represents new information and
requirements imposed on us.

Biological neural networks have complicated
topologies.

Researchers are still to find out how the brain
actually learns.

Advantage of Using Artificial Neural Networks:

Computers(ANN) work synchronously.

Artificial Neurons compute fast (<1 nanosecond
per computation)

In computer programs every bit has to function as
intended otherwise these programs would crash.

The connectivity between the electronic
components in a computer never change unless we
replace its components.

ANNSs are often in a tree structure.

ANNs use Gradient Descent for learning.

e Problem in ANNs can have instances that are represented by many attribute-value pairs.

e ANNSs used for problems having the target function output may be discrete-valued, real-valued, or a vector
of several real- or discrete-valued attributes.

¢ ANN learning methods are quite robust to noise in the training data. The training examples may contain

errors, which do not affect the final output.

e ltis used generally used where the fast evaluation of the learned target function may be required.
¢ ANNSs can bear long training times depending on factors such as the number of weights in the network, the
number of training examples considered, and the settings of various learning algorithm parameters.

Characteristics of Artificial Neural Network

e ltis neurally implemented mathematical model

¢ It contains huge number of interconnected processing elements called neurons to do all operations

¢ Information stored in the neurons are basically the weighted linkage of neurons

e The input signals arrive at the processing elements through connections and connecting weights.

e It has the ability to learn, recall and generalize from the given data by suitable assighment and adjustment

of weights.

e The collective behavior of the neurons describes its computational power, and no single neuron carries

specific information .

How simple neuron works ?

Let there are two neurons X and Y which is transmitting signal to another neuron Z . Then , X and Y are input neurons

for transmitting signals and Z is output neuron for receiving signal . The input neurons are connected to the output
neuron , over a interconnection links ( A and B ) as shown in figure .



Architecture of a Simple Artificial Neuron Net

For above neuron architecture , the net input has to be calculated in the way .

I=xA+yB

where x and y are the activations of the input neurons X and Y . The output z of the output neuron Z can be obtained
by applying activations over the net input .

o =A(l)

Output = Function ( net input calculated )

The function to be applied over the net input is called activation function . There are various activation function
possible for this.

Application of Neural Network

1. Every new technology need assistance from previous one i.e. data from previous ones and these data are analyzed
so that every pros and cons should be studied correctly . All of these things are possible only through the help of
neural network.

2. Neural network is suitable for the research on Animal behavior, predator/prey relationships and population
cycles .

3. It would be easier to do proper valuation of property, buildings, automobiles, machinery etc. with the help of
neural network.

4. Neural Network can be used in betting on horse races, sporting events and most importantly in stock market .
5. It can be used to predict the correct judgement for any crime by using a large data of crime details as input and
the resulting sentences as output.

6. By analyzing data and determining which of the data has any fault ( files diverging from peers ) called as Data
mining, cleaning and validation can be achieved through neural network.

7. Neural Network can be used to predict targets with the help of echo patterns we get from sonar, radar, seismic
and magnetic instruments .

8. It can be used efficiently in Employee hiring so that any company can hire right employee depending upon the
skills the employee has and what should be it’s productivity in future .

9. It has a large application in Medical Research .

10. It can be used to for Fraud Detection regarding credit cards , insurance or taxes by analyzing the past records .

Hybrid systems: A Hybrid system is an intelligent system which is framed by combining atleast two intelligent
technologies like Fuzzy Logic, Neural networks, Genetic algorithm, reinforcement Learning, etc. The combination of
different techniques in one computational model make these systems possess an extended range of capabilities.
These systems are capable of reasoning and learning in an uncertain and imprecise environment. These systems can
provide human-like expertise like domain knowledge, adaptation in noisy environment etc.
Types of Hybrid Systems:

¢ Neuro Fuzzy Hybrid systems

¢ Neuro Genetic Hybrid systems

e Fuzzy Genetic Hybrid systems
(A) Neuro Fuzzy Hybrid systems:
Neuro fuzzy system is based on fuzzy system which is trained on the basis of working of neural network theory. The
learning process operates only on the local information and causes only local changes in the underlying fuzzy system.
A neuro-fuzzy system can be seen as a 3-layer feedforward neural network. The first layer represents input variables,
the middle (hidden) layer represents fuzzy rules and the third layer represents output variables. Fuzzy sets are



encoded as connection weights within the layers of the network, which provides functionality in processing and
training the model.
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Working flow:
¢ Ininput layer, each neuron transmits external crisp signals directly to the next layer.
e Each fuzzification neuron receives a crisp input and determines the degree to which the input belongs to
input fuzzy set.
e Fuzzy rule layer receives neurons that represent fuzzy sets.
e Anoutput neuron, combines all inputs using fuzzy operation UNION.
e Each defuzzification neuron represents single output of neuro-fuzzy system.

Advantages:
e |t can handle numeric, linguistic, logic, etc kind of information.
e It can manage imprecise, partial, vague or imperfect information.
e It can resolve conflicts by collaboration and aggregation.
e It has self-learning, self-organizing and self-tuning capabilities.
e It can mimic human decision-making process.

Disadvantages:
e Hard to develop a model from a fuzzy system
e Problems of finding suitable membership values for fuzzy systems
e Neural networks cannot be used if training data is not available.

Applications:
e Student Modelling
e Medical systems
e Traffic control systems
e  Forecasting and predictions

(B) Neuro Genetic Hybrid systems:

A Neuro Genetic hybrid system is a system that combines Neural networks: which are capable to learn various tasks
from examples, classify objects and establish relation between them and Genetic algorithm: which serves important

search and optimization techniques. Genetic algorithms can be used to improve the performance of Neural
Networks and they can be used to decide the connection weights of the inputs. These algorithms can also be used
for topology selection and training network.

Working Flow:
e GA repeatedly modifies a population of individual solutions. GA uses three main types of rules at each step
to create the next generation from the current population:
1. Selection to select the individuals, called parents, that contribute to the population at the next
generation
2. Crossover to combine two parents to form children for the next generation
3. Mutation to apply random changes to individual parents in order to form children



e GA then sends the new child generation to ANN model as new input parameter.
e Finally, calculating of the fitness by developed ANN model is performed.

PARENTS
STRINGS

Advantages:
e GAis used for topology optimization i.e to select number of hidden layers, number of hidden nodes and
interconnection pattern for ANN.
¢ In GAs, the learning of ANN is formulated as a weight optimization problem, usually using the inverse mean
squared error as a fitness measure.
e Control parameters such as learning rate, momentum rate, tolerance level, etc are also optimized using GA.
e It can mimic human decision-making process.

Disadvantages:
e Highly complex system.
e Accuracy of the system is dependent on the initial population.
e Maintaintainance costs are very high.

Applications:
e Face recognition
e  DNA matching
e Animal and human research
e Behavioral system

(C) Fuzzy Genetic Hybrid systems:
A Fuzzy Genetic Hybrid System is developed to use fuzzy logic based techniques for improving and modelling Genetic
algorithms and vice-versa. Genetic algorithm has proved to be a robust and efficient tool to perform tasks like
generation of fuzzy rule base, generation of membership function etc.
Three approaches that can be used to develop such system are:

e Michigan Approach

e Pittsburgh Approach

e |IRL Approach

Working Flow:
e Start with an initial population of solutions that represent first generation.
e Feed each chromosome from the population into the Fuzzy logic controller and compute performance index.



e Create new generation using evolution operators till some condition is met.

Advantages:
e GAs are used to develop the best set of rules to be used by a fuzzy inference engine
e GAs are used to optimize the choice of membership functions.
e AFuzzy GAis a directed random search over all discrete fuzzy subsets.
¢ |t can mimic human decision-making process.

Disadvantages:
e Interpretation of results is difficult.
e Difficult to build membership values and rules.
e Takes lots of time to converge.

Applications:
¢ Mechanical Engineering
e Electrical Engine
e Artificial Intelligence
e Economics

Network Architectures

An Artificial Neural Network (ANN) is an information processing paradigm that is inspired from the brain. ANNs, like
people, learn by examples. An ANN is configured for a specific application, such as pattern recognition or data
classification, through a learning process. Learning largely involves adjustments to the synaptic connections that
exist between the neurons.
The model of Artificial neural network which can be specified by three entities:

¢ Interconnections

e Activation functions

e Learning rules

Interconnections:
Interconnection can be defined as the way processing elements (Neuron) in ANN are connected to each other.
Hence, the arrangements of these processing elements and geometry of interconnections are very essential in ANN.
These arrangements always have two layers which are common to all network architectures, Input layer and output
layer where input layer buffers the input signal and output layer generates the output of the network. The third layer
is the Hidden layer, in which neurons are neither kept in the input layer nor in the output layer. These neurons are
hidden from the people who are interfacing with the system and acts as a blackbox to them. On increasing the
hidden layers with neurons, the system’s computational and processing power can be increased but the training
phenomena of the system gets more complex at the same time.
There exist five basic types of neuron connection architecture:

1. Single-layer feed forward network

2. Multilayer feed forward network



3. Single node with its own feedback
4. Single-layer recurrent network
5. Multilayer recurrent network

1. Single-layer feed forward network

In this type of network, we have only two layers input layer and output layer but input layer does not count
because no computation performed in this layer. Output layer is formed when different weights are applied
on input nodes and the cumulative effect per node is taken. After this the neurons collectively give the
output layer compute the output signals.

2. Multilayer feed forward network
Input Hidden Cutput
Layer Layer Layer

This layer also has hidden layer which is internal to the network and has no direct contact with the external

layer. Existence of one or more hidden layers enable the network to be computationally stronger, feed-
forward network because information ?ows through the input function, and the intermediate computations
used to de?ne the output Z. There are no feedback connections in which outputs of the model are fed back
into itself.

3. Single node with its own feedback
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When outputs can be directed back as inputs to the same layer or preceeding layer nodes, then it results in
feedback networks. Recurrent networks are feedback networks with closed loop. Above figure shows a single
recurrent network having single neuron with feedback to itself.

4. Single-layer recurrent network
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Above network is single layer network with feedback connection in which processing element’s output can be
directed back to itself or to other processing element or both. Recurrent neural network is a class of artificial
neural network where connections between nodes form a directed graph along a sequence. This allows it to
exhibit dynamic temporal behavior for a time sequence. Unlike feed forward neural networks, RNNs can use
their internal state (memory) to process sequences of inputs.

5. Multilayer recurrent network
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In this type of network, processing element output can be directed to the processing element in the same layer and
in the preceding layer forming a multilayer recurrent network. They perform the same task for every element of a




sequence, with the output being depended on the previous computations. Inputs are not needed at each time step.
The main feature of an Recurrent Neural Network is its hidden state, which captures some information about a
sequence.

Activation functions in Neural Networks
Elements of a Neural Network :-

Input Layer :- This layer accepts input features. It provides information from the outside world to the network, no
computation is performed at this layer, nodes here just pass on the information(features) to the hidden layer.
Hidden Layer :- Nodes of this layer are not exposed to the outer world, they are the part of the abstraction provided
by any neural network. Hidden layer performs all sort of computation on the features entered through the input
layer and transfer the result to the output layer.

Output Layer :- This layer bring up the information learned by the network to the outer world.

What is an activation function and why to use them?

Definition of activation function:- Activation function decides, whether a neuron should be activated or not by
calculating weighted sum and further adding bias with it. The purpose of the activation function is to introduce non-
linearity into the output of a neuron.

Explanation :-

We know, neural network has neurons that work in correspondence of weight, bias and their respective activation
function. In a neural network, we would update the weights and biases of the neurons on the basis of the error at
the output. This process is known as back-propagation. Activation functions make the back-propagation possible
since the gradients are supplied along with the error to update the weights and biases.

Why do we need Non-linear activation functions :-

A neural network without an activation function is essentially just a linear regression model. The activation function
does the non-linear transformation to the input making it capable to learn and perform more complex tasks.
Mathematical proof :- Suppose we have a Neural net like this :-

&1

Elements of the diagram :-
Hidden layer i.e. layer 1 :-
z(1) = W(1)X + b(1)
a(l1) =z(1)
Here,
e 7(1)is the vectorized output of layer 1
e W(1) be the vectorized weights assigned to neurons
of hidden layer i.e. w1, w2, w3 and w4
e X be the vectorized input features i.e. i1 and i2
e bis the vectorized bias assigned to neurons in hidden
layeri.e. b1 and b2
e a(1)is the vectorized form of any linear function.



(Note: We are not considering activation function here)

Layer 2 i.e. output layer :-
// Note : Input for layer
// 2 isoutput from layer 1
z(2) = W(2)a(1) + b(2)

a(2) =z(2)

Calculation at Output layer:
// Putting value of z(1) here

2(2) = (W(2) * [W(1)X + b(1)]) + b(2)
2(2) = [W(2) * W(1)] * X + [W(2)*b(1) + b(2)]

Let,
[W(2) * W(1)] =W
[W(2)*b(1) + b(2)]=Db

Final output : z(2) = W*X + b
Which is again a linear function

This observation results again in a linear function even after applying a hidden layer, hence we can conclude that,
doesn’t matter how many hidden layer we attach in neural net, all layers will behave same way because the
composition of two linear function is a linear function itself. Neuron can not learn with just a linear function
attached to it. A non-linear activation function will let it learn as per the difference w.r.t error.

Hence we need activation function.

VARIANTS OF ACTIVATION FUNCTION :-
1). Linear Function :-
e Equation : Linear function has the equation similar to as of a straight line i.e. y = ax
¢ No matter how many layers we have, if all are linear in nature, the final activation function of last layer is
nothing but just a linear function of the input of first layer.
¢ Range: -inf to +inf
e Uses : Linear activation function is used at just one place i.e. output layer.
e Issues : If we will differentiate linear function to bring non-linearity, result will no more depend on input
“x” and function will become constant, it won’t introduce any ground-breaking behavior to our algorithm.
For example : Calculation of price of a house is a regression problem. House price may have any big/small value, so
we can apply linear activation at output layer. Even in this case neural net must have any non-linear function at
hidden layers.

2). Sigmoid Function :-

e Itis a function which is plotted as ‘S’ shaped graph.

e Equation:
A=1/(1+¢”)

e Nature : Non-linear. Notice that X values lies between -2 to 2, Y values are very steep. This means, small
changes in x would also bring about large changes in the value of Y.

e ValueRange:0to1l

e Uses : Usually used in output layer of a binary classification, where result is either 0 or 1, as value for sigmoid
function lies between 0 and 1 only so, result can be predicted easily to be 1 if value is greater
than 0.5 and 0 otherwise.

3). Tanh Function :- The activation that works almost always better than sigmoid function is Tanh function also
knows as Tangent Hyperbolic function. It’s actually mathematically shifted version of the sigmoid function. Both are
similar and can be derived from each other.



Equation :-
f(x) = tanh(x) = 2/(1 + e-2x) - 1
OR
tanh(x) = 2 * sigmoid(2x) - 1

e Value Range :--1to+1

e Nature :- non-linear

e Uses :- Usually used in hidden layers of a neural network as it’s values lies between -1 to 1 hence the mean
for the hidden layer comes out be 0 or very close to it, hence helps in centering the data by bringing mean
close to 0. This makes learning for the next layer much easier.

4).RELU :- Stands for Rectified linear unit. It is the most widely used activation function. Chiefly implemented
in hidden layers of Neural network.

e Equation :- A(x) = max(0,x). It gives an output x if x is positive and 0 otherwise.

e Value Range :- [0, inf)

¢ Nature :- non-linear, which means we can easily backpropagate the errors and have multiple layers of
neurons being activated by the ReLU function.

e Uses :- Relu is less computationally expensive than tanh and sigmoid because it involves simpler
mathematical operations. At a time only a few neurons are activated making the network sparse making it
efficient and easy for computation.

In simple words, RELU learns much faster than sigmoid and Tanh function.

5). Softmax Function :- The softmax function is also a type of sigmoid function but is handy when we are trying to
handle classification problems.
¢ Nature :- non-linear
e Uses :- Usually used when trying to handle multiple classes. The softmax function would squeeze the outputs
for each class between 0 and 1 and would also divide by the sum of the outputs.
e Ouput:- The softmax function is ideally used in the output layer of the classifier where we are actually trying
to attain the probabilities to define the class of each input.

CHOOSING THE RIGHT ACTIVATION FUNCTION
e The basic rule of thumb is if you really don’t know what activation function to use, then simply use RELU as it
is a general activation function and is used in most cases these days.
e If your output is for binary classification then, sigmoid function is very natural choice for output layer.
Foot Note :-
The activation function does the non-linear transformation to the input making it capable to learn and perform
more complex tasks.
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Adjustments of Weights or Learning

Learning, in artificial neural network, is the method of modifying the weights of connections between the neurons of
a specified network. Learning in ANN can be classified into three categories namely supervised learning,
unsupervised learning, and reinforcement learning.

Supervised Learning

As the name suggests, this type of learning is done under the supervision of a teacher. This learning process is
dependent.During the training of ANN under supervised learning, the input vector is presented to the network,
which will give an output vector. This output vector is compared with the desired output vector. An error signal is
generated, if there is a difference between the actual output and the desired output vector. On the basis of this
error signal, the weights are adjusted until the actual output is matched with the desired output.

i Neural
M (input) —» _ = Y [Actual output)
Network

T

Error Signal

b

(D-¥)
Error D (Desired Output
- .
Slgnal (Desire utput)
Generator

Unsupervised Learning
As the name suggests, this type of learning is done without the supervision of a teacher. This learning process is
independent.

During the training of ANN under unsupervised learning, the input vectors of similar type are combined to form
clusters. When a new input pattern is applied, then the neural network gives an output response indicating the class
to which the input pattern belongs.There is no feedback from the environment as to what should be the desired
output and if it is correct or incorrect. Hence, in this type of learning, the network itself must discover the patterns
and features from the input data, and the relation for the input data over the output.
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Reinforcement Learning

As the name suggests, this type of learning is used to reinforce or strengthen the network over some critic
information. This learning process is similar to supervised learning, however we might have very less information.
During the training of network under reinforcement learning, the network receives some feedback from the
environment. This makes it somewhat similar to supervised learning. However, the feedback obtained here is
evaluative not instructive, which means there is no teacher as in supervised learning. After receiving the feedback,
the network performs adjustments of the weights to get better critic information in future.
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What Is Learning in ANN?

Basically, learning means to do and adapt the change in itself as and when there is a change in environment. ANN is
a complex system or more precisely we can say that it is a complex adaptive system, which can change its internal
structure based on the information passing through it.

Why Is It important?

Being a complex adaptive system, learning in ANN implies that a processing unit is capable of changing its
input/output behavior due to the change in environment. The importance of learning in ANN increases because of
the fixed activation function as well as the input/output vector, when a particular network is constructed. Now to
change the input/output behavior, we need to adjust the weights.

Classification

It may be defined as the process of learning to distinguish the data of samples into different classes by finding
common features between the samples of the same classes. For example, to perform training of ANN, we have some
training samples with unique features, and to perform its testing we have some testing samples with other unique
features. Classification is an example of supervised learning.

Neural Network Learning Rules
We know that, during ANN learning, to change the input/output behavior, we need to adjust the weights. Hence, a
method is required with the help of which the weights can be modified. These methods are called Learning rules,
which are simply algorithms or equations. Following are some learning rules for the neural network —
¢ Hebbian learning rule — It identifies, how to modify the weights of nodes of a network.
e Perceptron learning rule — Network starts its learning by assigning a random value to each weight.
¢ Delta learning rule — Modification in sympatric weight of a node is equal to the multiplication of error and
the input.
e Correlation learning rule — The correlation rule is the supervised learning.
e Outstar learning rule — We can use it when it assumes that nodes or neurons in a network arranged in a
layer

1) Hebbian Learning Rule
The Hebbian rule was the first learning rule. In 1949 Donald Hebb developed it as learning algorithm of the
unsupervised neural network. We can use it to identify how to improve the weights of nodes of a network.
The Hebb learning rule assumes that — If two neighbor neurons activated and deactivated at the same time. Then
the weight connecting these neurons should increase. For neurons operating in the opposite phase, the weight
between them should decrease. If there is no signal correlation, the weight should not change.

When inputs of both the nodes are either positive or negative, then a strong positive weight exists between the
nodes. If the input of a node is positive and negative for other, a strong negative weight exists between the nodes.
At the start, values of all weights are set to zero. This learning rule can be usedO for both soft- and hard-activation
functions. Since desired responses of neurons are not used in the learning procedure, this is the unsupervised
learning rule. The absolute values of the weights are usually proportional to the learning time, which is undesired.
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2) Perceptron Learning Rule




As you know, each connection in a neural network has an associated weight, which changes in the course of
learning. According to it, an example of supervised learning, the network starts its learning by assigning a random
value to each weight.

Calculate the output value on the basis of a set of records for which we can know the expected output value. This is
the learning sample that indicates the entire definition. As a result, it is called a learning sample.

The network then compares the calculated output value with the expected value. Next calculates an error

function €, which can be the sum of squares of the errors occurring for each individual in the learning sample.
Computed as follows:

Z;(Eff'_()ﬁ)z

Perform the first summation on the individuals of the learning set, and perform the second summation on the
output units. Eij and Oij are the expected and obtained values of the jth unit for the ith individual.

The network then adjusts the weights of the different units, checking each time to see if the error function has
increased or decreased. As in a conventional regression, this is a matter of solving a problem of least squares.
Since assigning the weights of nodes according to users, it is an example of supervised learning.

3) Delta Learning Rule
Developed by Widrow and Hoff, the delta rule, is one of the most common learning rules. It depends on supervised
learning.
This rule states that the modification in sympatric weight of a node is equal to the multiplication of error and the
input.
In Mathematical form the delta rule is as follows:

Aw=m (tL—v) X,

For a given input vector, compare the output vector is the correct answer. If the difference is zero, no learning takes
place; otherwise, adjusts its weights to reduce this difference. The change in weight from ui to uj is: dwij = r* ai * ej.
where r is the learning rate, ai represents the activation of ui and ej is the difference between the expected output
and the actual output of uj. If the set of input patterns form an independent set then learn arbitrary associations
using the delta rule.

It has seen that for networks with linear activation functions and with no hidden units. The error squared vs. the
weight graph is a paraboloid in n-space. Since the proportionality constant is negative, the graph of such a function is
concave upward and has the least value. The vertex of this paraboloid represents the point where it reduces the
error. The weight vector corresponding to this point is then the ideal weight vector.

We can use the delta learning rule with both single output unit and several output units.

While applying the delta rule assume that the error can be directly measured.

The aim of applying the delta rule is to reduce the difference between the actual and expected output that is the
error.

4) Correlation Learning Rule
The correlation learning rule based on a similar principle as the Hebbian learning rule. It assumes that weights
between responding neurons should be more positive, and weights between neurons with opposite reaction should
be more negative.
Contrary to the Hebbian rule, the correlation rule is the supervised learning. Instead of an actual
The response, 0j, the desired response, dj, uses for the weight-change calculation.
In Mathematical form the correlation learning rule is as follows:

AW, = T]Xidj

Where dj is the desired value of output signal. This training algorithm usually starts with the initialization of weights
to zero.Since assigning the desired weight by users, the correlation learning rule is an example of supervised
learning.

5) Out Star Learning Rule




We use the Out Star Learning Rule when we assume that nodes or neurons in a network arranged in a layer. Here
the weights connected to a certain node should be equal to the desired outputs for the neurons connected through
those weights. The out start rule produces the desired response t for the layer of n nodes.

Apply this type of learning for all nodes in a particular layer. Update the weights for nodes are as in Kohonen neural
networks.
In Mathematical form, express the out star learning as follows:

B .r?(yk—wjk)lf node j wins the competition
w;'k o

O 1if node j losses the competition

Supervised learning takes place under the supervision of a teacher. This learning process is dependent. During the
training of ANN under supervised learning, the input vector is presented to the network, which will produce an
output vector. This output vector is compared with the desired/target output vector. An error signal is generated if
there is a difference between the actual output and the desired/target output vector. On the basis of this error
signal, the weights would be adjusted until the actual output is matched with the desired output.

Supervised learning in neural networks is usually performed in the following sequence:

1. Set an appropriate structure of a neural network, having, for example, (n + 1) input neurons (n for the
input variables and 1 for the bias, x0) and m output neurons and set initial values of the connection
weights of the network.

2. Supply an input vector x from the set of the training examples X to the network.

3. Calculate the output vector o as produced by the neural network.

4. Compare the desired output vector y (answer, from the training data) and the output vector o
produced

by the network; if possible, evaluate the error.

5. Correct the connection weights in such a way that the next time x is presented to the network, the
produced output o becomes closer to the desired output y.

6. If necessary, repeat steps 2 to 5 until the network reaches a convergence state.

Evaluating an error of approximation can be done in many ways, the most used being instantaneous
error:

Err=(o-y), orErr=[o-y|;

mean-square error (MSE):

Err = (0-y)2/2;

a total MSE sums the error over all individual examples and all the output neurons in the network:

Err = i (o — y/")?* |/ p-m
1
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The above general algorithm for supervised learning in a neural network has different implementations,

mainly distinguished by the way the connection weights are changed through training. Some of the

algorithms are perceptron learning (Rosenblatt 1958); ADALINE (Widrow and Hoff 1960); the backpropagation
algorithm (Rumelhart et al. 1986b; and others); and (learning vector quantization) LVQ1,2,3 algorithms (Kohonen
1990).

Perceptron

Developed by Frank Rosenblatt by using McCulloch and Pitts model, perceptron is the basic operational unit of
artificial neural networks. It employs supervised learning rule and is able to classify the data into two classes.



Operational characteristics of the perceptron: It consists of a single neuron with an arbitrary number of inputs along
with adjustable weights, but the output of the neuron is 1 or 0 depending upon the threshold. It also consists of a
bias whose weight is always 1. Following figure gives a schematic representation of the perceptron.
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Perceptron thus has the following three basic elements -
¢ Links - It would have a set of connection links, which carries a weight including a bias always having weight
1.
e Adder - It adds the input after they are multiplied with their respective weights.
e Activation function - It limits the output of neuron. The most basic activation function is a Heaviside step
function that has two possible outputs. This function returns 1, if the input is positive, and 0 for any negative
input.

Training Algorithm

Pl Set a (n+ 1 )-input, m-output perceptron. Randomize all network weights w ijr
1=0,1.2,.n,)=1.2,...m, to small numbers

P2, Apply an input feature vector x and calculate the net input signal u; to each output
perceptron neuron ) using the standard formula:
uj = El:l.l . wij). for1=0,1,2,..n, for)= 1.2, m, where x =1 is the has.
P Apply a hard-limated threshold activation function to the pet input signals as
fﬂllU-Ws'
> threshold, o) = () otherwise,
(.’kpplymgl linear thresholding function is also possible).

P4. Compute the error for each neuron by subtracting the actual output from the
| . L= -
arget output:  Err =YY
P35 Modify cach weight w,. by calculating its next value w, {l+l} from the previous

one w1} and from Ihe cvnlum‘cd emor E"_l
Wi {:+1’) =w. (1) + ax.
wht:n: s u‘s:armng Lmiﬁcwm a number between O and |

P6. Repeat steps P2 through PS5 until the error vector Err s sufficiently low, i .e. the
perceplron goes inlo a Convergence.

How does it work?
The perceptron works on these simple steps



a. All the inputs x are multiplied with their weights w. Let’s call it k.
b. Add all the multiplied values and call them Weighted Sum.
c. Apply that weighted sum to the correct Activation Function.

term we end with
Xn . W K
2" 5
Outout sigma for 2
Inputs X Wy o— utput_o y@orD)  summation o K <— the formula for the nth term
K=1
xg. Wy / ~ the term we start with
k is the index
(It's like a counter.
— 55 Some books use i.)
Unit step (threshold)
fO if 0= x ’
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Why do we need Weights and Bias?
Weights shows the strength of the particular node. A bias value allows you to shift the activation function curve up
or down.
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Why do we need Activation Function?

In short, the activation functions are used to map the input between the required values like (0, 1) or (-1, 1).
Where we use Perceptron?

Perceptron is usually used to classify the data into two parts. Therefore, it is also known as a Linear Binary Classifier.

Adaptive Linear Neuron
Adaline which stands for Adaptive Linear Neuron, is a network having a single linear unit. It was developed by
Widrow and Hoff in 1960. Some important points about Adaline are as follows -

e It uses bipolar activation function.

e [t uses delta rule for training to minimize the Mean-Squared Error (MSE) between the actual output and the

desired/target output.

e The weights and the bias are adjustable.
The key difference between the Adaline rule (also known as the Widrow-Hoff rule) and Rosenblatt's perceptron is
that the weights are updated based on a linear activation function rather than a unit step function.
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Adaptive linear neuron
The difference is that we're going to use the continuous valued output from the linear activation function to
compute the model error and update the weights, rather than the binary class labels.

In contrast to the perceptron rule, the delta rule of the adaline updates the weights based on a linear activation
function rather than a unit step function; here, this linear activation function g(z)g(z) is just the identity function of
the net input g(wTx)=wTx. In the next section, we will see why this linear activation is an improvement over the
perceptron update and where the name “delta rule” comes from

Gradient Descent

Being a continuous function, one of the biggest advantages of the linear activation function over the unit step
function is that it is differentiable. This property allows us to define a cost function J(w)J(w) that we can minimize in
order to update our weights. In the case of the linear activation function, we can define the cost function J(w)J(w) as
the sum of squared errors (SSE), which is similar to the cost function that is minimized in ordinary least squares (OLS)
linear regression.

1 ] s .
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(The fraction 1/2 is just used for convenience to derive the gradient as we will see in the next paragraphs.)

In order to minimize the SSE cost function, we will use gradient descent, a simple yet useful optimization algorithm
that is often used in machine learning to find the local minimum of linear systems.

Before we get to the fun part (calculus), let us consider a convex cost function for one single weight. As illustrated in
the figure below, we can describe the principle behind gradient descent as “climbing down a hill” until a local or
global minimum is reached. At each step, we take a step into the opposite direction of the gradient, and the step size
is determined by the value of the learning rate as well as the slope of the gradient.

In order to minimize the SSE cost function, we will use gradient descent, a simple yet useful optimization algorithm
that is often used in machine learning to find the local minimum of linear systems.

Before we get to the fun part (calculus), let us consider a convex cost function for one single weight. As illustrated in
the figure below, we can describe the principle behind gradient descent as “climbing down a hill” until a local or
global minimum is reached. At each step, we take a step into the opposite direction of the gradient, and the step size
is determined by the value of the learning rate as well as the slope of the gradient.
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Schematic of gradient descent.

Now, as promised, onto the fun part — deriving the Adaline learning rule. As mentioned above, each update is
w=—nVJ(lw
! ( :I, thus, we have to compute
Awj = —ni—'{.
the partial derivative of the cost function for each weight in the weight vector:

A
updated by taking a step into the opposite direction of the gradient

The partial derivative of the SSE cost function for a particular weight can be calculated as follows:
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(t = target, o = output)
And if we plug the results back into the learning rule, we get

Aw; =~ = 3,19 — o)(—a) = 0 ¥, (t0 — o)al

Eventually, we can apply a simultaneous weight update similar to the perceptron rule: W:=w+Aw.

Although, the learning rule above looks identical to the perceptron rule, we shall note the two main differences:
1. Here, the output “0” is a real number and not a class label as in the perceptron learning rule.
2. The weight update is calculated based on all samples in the training set (instead of updating the weights
incrementally after each sample), which is why this approach is also called “batch” gradient descent.
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The two plots above nicely emphasize the importance of plotting learning curves by illustrating two most common
problems with gradient descent:
1. If the learning rate is too large, gradient descent will overshoot the minima and diverge.
2. [If the learning rate is too small, the algorithm will require too many epochs to converge and can become
trapped in local minima more easily.

S ",
J(w) J(w)
\"v wW
Large learning rate: Overshooting. Small learning rate: Many iterations

until convergence and trapping in
local minima.

Gradient descent is also a good example why feature scaling is important for many machine learning algorithms. It is
not only easier to find an appropriate learning rate if the features are on the same scale, but it also often leads to
faster convergence and can prevent the weights from becoming too small (numerical stability). A common way of
feature scaling is standardization
Xj— Hj
Xijgpd = ———

18 o
where yj is the sample mean of the feature xj and oj the standard deviation, respectively. After standardization, the
features will have unit variance and are centred around mean zero.

Online Learning via Stochastic Gradient Descent

Batch gradient descent learning the “batch” updates refers to the fact that the cost function is minimized based on
the complete training data set. If we think back to the perceptron rule, we remember that it performed the weight
update incrementally after each individual training sample. This approach is also called “online” learning, and in fact,
this is also how Adaline was first described by Bernard Widrow.

The process of incrementally updating the weights is also called “stochastic” gradient descent since it approximates
the minimization of the cost function. Although the stochastic gradient descent approach might sound inferior to
gradient descent due its “stochastic” nature and the “approximated” direction (gradient), it can have certain
advantages in practice. Often, stochastic gradient descent converges much faster than gradient descent since the
updates are applied immediately after each training sample; stochastic gradient descent is computationally more
efficient, especially for very large datasets. Another advantage of online learning is that the classifier can be
immediately updated as new training data arrives, e.g., in web applications, and old training data can be discarded if



storage is an issue. In large-scale machine learning systemes, it is also common practice to use so-called “mini-
batches”, a compromise with smoother convergence than stochastic gradient descent.

Multiple Adaptive Linear Neuron (Madaline)
Madaline which stands for Multiple Adaptive Linear Neuron, is a network which consists of many Adalines in parallel.
It will have a single output unit. Some important points about Madaline are as follows —
e Itisjust like a multilayer perceptron, where Adaline will act as a hidden unit between the input and the
Madaline layer.
e The weights and the bias between the input and Adaline layers, as in we see in the Adaline architecture, are
adjustable.
e The Adaline and Madaline layers have fixed weights and bias of 1.
e Training can be done with the help of Delta rule.
Architecture
The architecture of Madaline consists of “n” neurons of the input layer, “m” neurons of the Adaline layer, and 1
neuron of the Madaline layer. The Adaline layer can be considered as the hidden layer as it is between the input
layer and the output layer, i.e. the Madaline layer.

Xy

Multilayer perceptron (Feedforward Neural Networks)

A multilayer perceptron (MLP) is a class of feedforward artificial neural network. An MLP consists of at least three
layers of nodes: an input layer, a hidden layer and an output layer. Except for the input nodes, each node is a neuron
that uses a nonlinear activation function. MLP utilizes a supervised learning technique called back propagation for
training.lts multiple layers and non-linear activation distinguish MLP from a linear perceptron. It can distinguish data
that is not linearly separable.Multilayer perceptrons are sometimes colloquially referred to as "vanilla" neural
networks, especially when they have a single hidden layer.

Input Layer: The Input layer has three nodes. The Bias node has a value of 1. The other two nodes take X1 and X2 as
external inputs (which are numerical values depending upon the input dataset). As discussed above, no computation
is performed in the Input layer, so the outputs from nodes in the Input layer are 1, X1 and X2 respectively, which are
fed into the Hidden Layer.

Hidden Layer: The Hidden layer also has three nodes with the Bias node having an output of 1. The output of the
other two nodes in the Hidden layer depends on the outputs from the Input layer (1, X1, X2) as well as the weights
associated with the connections (edges). Below figure shows the output calculation for one of the hidden nodes
(highlighted). Similarly, the output from other hidden node can be calculated. Remember that f refers to the
activation function. These outputs are then fed to the nodes in the Output layer.
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Output Layer: The Output layer has two nodes which take inputs from the Hidden layer and perform similar
computations as shown for the highlighted hidden node. The values calculated (Y1 and Y2) as a result of these
computations act as outputs of the Multi Layer Perceptron.

Given a set of features X = (x1, X2, ...) and a target y, a Multi Layer Perceptron can learn the relationship between the
features and the target, for either classification or regression.

Lets take an example to understand Multi Layer Perceptrons better. Suppose we have the following student-marks
dataset:

Hours Studied | Mid Term Marks | Final Term Result
35 67 1 (Pass)
12 75 0 (Fail)
16 a9 1 (Pass)
45 56 1 (Pass)
10 90 0 (Fail)

The two input columns show the number of hours the student has studied and the mid term marks obtained by the

student. The Final Result column can have two values 1 or 0 indicating whether the student passed in the final

term. For example, we can see that if the student studied 35 hours and had obtained 67 marks in the mid term, he /

she ended up passing the final term.

Now, suppose, we want to predict whether a student studying 25 hours and having 70 marks in the mid term will

pass the final term.

Hours Studied | Mid Term Marks |Final Term Resul
25 70 7

This is a binary classification problem where a multi layer perceptron can learn from the given examples (training
data) and make an informed prediction given a new data point. We will see below how a multi layer
perceptron learns such relationships.

Training our MLP: The Back-Propagation Algorithm

The process by which a Multi Layer Perceptron learns is called the Back-proagation algorithm.

Backward Propagation of Errors, often abbreviated as BackProp is one of the several ways in which an artificial
neural network (ANN) can be trained. It is a supervised training scheme, which means, it learns from labeled training
data (there is a supervisor, to guide its learning).

To put in simple terms, BackProp is like “learning from mistakes”. The supervisor corrects the ANN whenever it
makes mistakes.

An ANN consists of nodes in different layers; input layer, intermediate hidden layer(s) and the output layer. The
connections between nodes of adjacent layers have “weights” associated with them. The goal of learning is to assign
correct weights for these edges. Given an input vector, these weights determine what the output vector is.



In supervised learning, the training set is labeled. This means, for some given inputs, we know the desired/expected
output (label).

BackProp Algorithm:

Initially all the edge weights are randomly assigned. For every input in the training dataset, the ANN is activated and
its output is observed. This output is compared with the desired output that we already know, and the error is
“propagated” back to the previous layer. This error is noted and the weights are “adjusted” accordingly. This process
is repeated until the output error is below a predetermined threshold.

Once the above algorithm terminates, we have a “learned” ANN which, we consider is ready to work with “new”
inputs. This ANN is said to have learned from several examples (labeled data) and from its mistakes (error
propagation).

The Multi Layer Perceptron shown in below Figure has two nodes in the input layer (apart from the Bias node) which
take the inputs ‘Hours Studied’ and ‘Mid Term Marks’. It also has a hidden layer with two nodes (apart from the Bias
node). The output layer has two nodes as well —the upper node outputs the probability of ‘Pass’ while the lower
node outputs the probability of ‘Fail’.

In classification tasks, we generally use a Softmax function as the Activation Function in the Output layer of the Multi
Layer Perceptron to ensure that the outputs are probabilities and they add up to 1. The Softmax function takes a
vector of arbitrary real-valued scores and squashes it to a vector of values between zero and one that sum to one.
So, in this case, Probability (Pass) + Probability (Fail) = 1

Step 1: Forward Propagation
All weights in the network are randomly assigned. Lets consider the hidden layer node marked V in above Figure
below. Assume the weights of the connections from the inputs to that node are w1, w2 and w3 (as shown).
The network then takes the first training example as input (we know that for inputs 35 and 67, the probability of
Pass is 1).

e Input to the network = [35, 67]

e Desired output from the network (target) = [1, 0]
Then output V from the node in consideration can be calculated as below (fis an activation function such as
sigmoid): V = f(1*w1 + 35*w2 + 67*w3)
Similarly, outputs from the other node in the hidden layer is also calculated. The outputs of the two nodes in the
hidden layer act as inputs to the two nodes in the output layer. This enables us to calculate output probabilities from
the two nodes in output layer.

Suppose the output probabilities from the two nodes in the output layer are 0.4 and 0.6 respectively (since the
weights are randomly assigned, outputs will also be random). We can see that the calculated probabilities (0.4 and
0.6) are very far from the desired probabilities (1 and 0 respectively), hence the network in Figure 5 is said to have an
‘Incorrect Output’.
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Step 2: Back Propagation and Weight Updation

We calculate the total error at the output nodes and propagate these errors back through the network using Back
propagation to calculate the gradients. Then we use an optimization method such as Gradient Descent to

‘adjust’ all weights in the network with an aim of reducing the error at the output layer. This is shown in the Figure
6 below (ignore the mathematical equations in the figure for now).



Suppose that the new weights associated with the node in consideration are w4, w5 and w6 (after Backpropagation
and adjusting weights).

P Jow) = a8 (error term of the output layer)
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If we now input the same example to the network again, the network should perform better than before since the
weights have now been adjusted to minimize the error in prediction. As shown in Figure 7, the errors at the output
nodes now reduce to [0.2, -0.2] as compared to [0.6, -0.4] earlier. This means that our network has learnt to
correctly classify our first training example.
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We repeat this process with all other training examples in our dataset. Then, our network is said to have learnt those
examples.

If we now want to predict whether a student studying 25 hours and having 70 marks in the mid term will pass the
final term, we go through the forward propagation step and find the output probabilities for Pass and Fail.

Principles of training multi-layer neural network using backpropagation

The project describes teaching process of multi-layer neural network

employing backpropagation algorithm. To illustrate this process the three layer neural network with two
inputs and one output,which is shown in the picture below, is used:



Each neuron is composed of two units. First unit adds products of weights coefficients and input signals. The second
unit realise nonlinear function, called neuron activation function. Signal e is adder output signal, and y = f(e) is
output signal of nonlinear element. Signal y is also output signal of neuron.
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To teach the neural network we need training data set. The training data set consists of input signals (x; and x; )
assigned with corresponding target (desired output) z. The network training is an iterative process. In each iteration
weights coefficients of nodes are modified using new data from training data set. Modification is calculated using
algorithm described below: Each teaching step starts with forcing both input signals from training set. After this
stage we can determine output signals values for each neuron in each network layer. Pictures below illustrate how
signal is propagating through the network, Symbols w,, represent weights of connections between network
input x,, and neuron n in input layer. Symbols y, represents output signal of neuron n.
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Propagation of signals through the hidden layer. Symbols w,,, represent weights of connections between output of
neuron m and input of neuron n in the next layer.

In the next algorithm step the output signal of the network y is compared with the desired output value (the target),
which is found in training data set. The difference is called error signal d of output layer neuron.




It is impossible to compute error signal for internal neurons directly, because output values of these neurons are
unknown. For many years the effective method for training multiplayer networks has been unknown. Only in the
middle eighties the backpropagation algorithm has been worked out. The idea is to propagate error

signal d (computed in single teaching step) back to all neurons, which output signals were input for discussed
neuron.

The weights' coefficients w,,, used to propagate errors back are equal to this used during computing output value.
Only the direction of data flow is changed (signals are propagated from output to inputs one after the other). This
technique is used for all network layers. If propagated errors came from few neurons they are added. The illustration
is below.




When the error signal for each neuron is computed, the weights coefficients of each neuron input node may be
modified. In formulas below df(e)/de represents derivative of neuron activation function (which weights are
modified).
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Coefficient h affects network teaching speed. There are a few techniques to select this parameter. The first method
is to start teaching process with large value of the parameter. While weights coefficients are being established the
parameter is being decreased gradually. The second, more complicated, method starts teaching with small
parameter value. During the teaching process the parameter is being increased when the teaching is advanced and
then decreased again in the final stage. Starting teaching process with low parameter value enables to determine
weights coefficients signs.



Forward pass:

BF1. Apply an input vector x and 1ts corresponding output vector ¥ (the desired output)

BF2. Propagate forward the input signals through all the ncurons in all the layers and I

calculate the output signals,

BF3. Calculite the Err, for every output ncuron j as for examphe:

E"j =¥ - O} where ¥y is the jth element of the desired cutput vector y.
Backward pass:
BBI. Adjust the weights between the intermediate neurons 1 and outputl pEYrons j

according 1o the calculated error:
.'_'l.wijﬂ+l ) = lrate. 0of1 - o) Efr. o + momentam. awlj (el

Awy(t + 1) =lrate.o (1 - o)) Err, xy + momentum, Awpale)

BB2  Calculate the error Erry for neurons i in the intermediate layer: |
E"_: E EH’I. \\"u |

|

BB Propagate the error back to the neurons k of lower level: |
|

|

Radial Basis Functions Neural Networks
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- In Single Perceptron / Multi-layer Perceptron(MLP), we only have linear separability because they are composed
of input and output layers(some hidden layers in MLP)
- For example, AND, OR functions are linearly-separable & XOR function is not linearly separable.



Linear separability
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- We atleast need one hidden layer to derive a non-linearity separation.
- Our RBNN what it does is, it transforms the input signal into another form, which can be then feed into the

network to get linear separability.
- RBNN is structurally same as perceptron(MLP).

NMLP REF

- RBNN is composed of input, hidden, and output layer. RBNN is strictly limited to have exactly one hidden layer. We

call this hidden layer as feature vector.
- RBNN increases dimenion of feature vector.

/_\:, Bias
pros 2%

Inprut laver Single hidden layer Ouipr layer

- We apply non-linear transfer function to the feature vector before we go for classification problem.
- When we increase the dimension of the feature vector, the linear separability of feature vector increases.

A non-linearity separable problem(pattern classification problem) is highly separable in high dimensional space than
it is in low dimensional space.

[Cover’s Theorem]

- What is a Radial Basis Function ?

- we define a receptor =t



- we draw confrontal maps around the receptor.
- Gaussian Functions are generally used for Radian Basis Function(confrontal mapping). So we define the radial
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Gaussian Radial Function := ¢(r) = exp (- r*/2¢?)
¢(r) = exp (- (x- M)%/26?) where o >0
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Where M and o are two parameters meaning the mean and the standard deviation of the input variable x.
For a particular intermediate node i, its RBFi is centered at a cluster center ci in the n-dimensional input
space. The cluster center ci is represented by the vector (wli. ..,wni) of connection weights between the n
input nodes and the hidden node i. The standard deviation for this cluster defines the range for the RBFi.
The RBF is nonmonotonic, in contrast to the sigmoid function. The second layer is connected to the

output layer. The output nodes perform a simple

summation function with a linear threshold activation function. Training of an RBFN consists of two
phases: (1) adjusting the RBF of the hidden neurons by applying a statistical clustering method; this
represents an unsupervised learning phase; (2) applying gradient descent (e.g., the back propagation
algorithm) or a linear regression algorithm for adjusting the second layer of connections; this is a
Supervised learning phase. During training, the following parameters of the RBFN are adjusted

* The n-dimensional position of the centers Ci of the RBFi. This can be achieved by using the kmeans
clustering algorithm ; the algorithm finds k (number of hidden nodes) cluster centers which minimize
the average distance between the training examples and the nearest centers.

® The deviation scaling parameter ¢ i for every RBFi; it is defined by using average distance to the nearest m-
cluster centers: “the squared sum of the distances between the respective receptor & the each cluster
nearest samples”
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® The weights of the second layer connections.
The recall procedure finds through the functions RBFi how close an input vector x' is to the centers ci
and then propagates these values