

Advance Data Structure And Algorithm

1a) Define Min heap?
A heap is a specialized tree-based data structure that satisfies the heap property: If A is a parent node of B then key(A) is ordered with respect to key(B) with the same ordering applying across the heap.
In a min heap the keys of parent nodes are always less than or equal to those of the children and the root node has the lowest key.

1b) Write difference between Fibonacci heap and skew heap.
Fibonacci Heap is a collection of trees with min-heap or max-heap property. In Fibonacci Heap, trees can can have any shape even all trees can be single nodes (This is unlike Binomial Heap where every tree has to be Binomial Tree).
Fibonacci Heap maintains a pointer to minimum value (which is root of a tree). All tree roots are connected using circular doubly linked list, so all of them can be accessed using single ‘min’ pointer.

A skew heap (or self – adjusting heap) is a heap data structure implemented as a binary tree. Skew heaps are advantageous because of their ability to merge more quickly than binary heaps. In contrast with binary heaps, there are no structural constraints, so there is no guarantee that the height of the tree is logarithmic. Only two conditions must be satisfied :
1. The general heap order must be there (root is minimum and same is recursively true for subtrees), but balanced property (all levels must be full except the last) is not required.
2. Main operation in Skew Heaps is Merge. We can implement other operations like insert, extractMin(), etc using Merge only.

1c) Write difference between R-Tree and B-Tree
R-tree is a tree data structure used for storing spatial data indexes in an efficient manner. R-trees are highly useful for spatial data queries and storage. It's used in geographic databases for queries such as:
all points within X meters from (x,y)

B-Tree is a self-balancing search tree. B-Tree is an efficient ordered key-value map. Meaning:
· given the key, a B-Tree index can quickly find a record,
· a B-Tree can be scanned in order.
· it's also easy to fetch all the keys (and records) within a range.
e.g. "all events between 9am and 5pm", "last names starting with 'R'"

1d) Define Deap Data structure
A deap is a double-ended heap that supports the double-ended priority operations of insert, delete-min, and delete-max.Similar to min-max heap but deap is faster on these operations by a constant factor, and the algorithms are simpler. A deap is a complete binary tree that is either empty or satisfies the following properties:
· The root contains no element
· The left subtree is a min heap.
· The right subtree is a max heap.

1e) How to measure the performance of algorithm?
The performance of an algorithm describes the efficiency of the algorithm in terms of the amount of the memory required to process the data and the processing time.
Performance of an algorithm is analyzed in two perspectives: Time and Space.

Time efficiency - a measure of amount of time for an algorithm to execute.
Space efficiency - a measure of the amount of memory needed for an algorithm to execute.
Different types of asymptotic notations are used to represent the complexity of an algorithm. Following asymptotic notations are used to calculate the running time complexity of an algorithm.
· O − Big Oh
· Ω − Big omega
· θ − Big theta
· o − Little Oh
· ω − Little omega

1f) Mention the general idea of dynamic programming.
Dynamic Programming is a paradigm of algorithm design in which an optimization problem is solved by a combination of achieving sub-problem solutions and appearing to the "principle of optimality".

Dynamic Programming works when a problem has the following features:-
· Optimal Substructure: If an optimal solution contains optimal sub solutions then a problem exhibits optimal substructure.
· Overlapping sub problems: When a recursive algorithm would visit the same sub problems repeatedly, then a problem has overlapping sub problems.

There are basically three elements that characterize a dynamic programming algorithm:-
1. Substructure: Decompose the given problem into smaller subproblems. Express the solution of the original problem in terms of the solution for smaller problems.
2. Table Structure: After solving the sub-problems, store the results to the sub problems in a table. This is done because subproblem solutions are reused many times, and we do not want to repeatedly solve the same problem over and over again.
3. Bottom-up Computation: Using table, combine the solution of smaller subproblems to solve larger subproblems and eventually arrives at a solution to complete problem.

1g) Define convex hull.
The convex hull may be defined either as the intersection of all convex sets containing X, or as the set of all convex combinations of points in X. Convex hulls may be extended from Euclidean spaces to arbitrary real vector spaces; they may also be generalized further, to oriented matroids.
The convex hull is a ubiquitous structure in computational geometry. Even though it is a useful tool in its own right, it is also helpful in constructing other structures like Voronoi diagrams, and in applications like unsupervised image analysis.

The convex hull of the set is the smallest convex polygon that contains all the points of it.
[image: https://media.geeksforgeeks.org/wp-content/uploads/ConvexHull.png]
The worst case time complexity of Jarvis’s Algorithm is O(n^2). Using Graham’s scan algorithm, we can find Convex Hull in O(nLogn) time. Following is Graham’s algorithm
Let points[0..n-1] be the input array.

1h) Write how greedy method works in general.
"Greedy Method finds out of many options, but you have to choose the best option."
In this method, we have to find out the best method/option out of many present ways.
This method may or may not give the best output. Greedy Algorithm solves problems by making the best choice that seems best at the particular moment. Many optimization problems can be determined using a greedy algorithm. Some issues have no efficient solution, but a greedy algorithm may provide a solution that is close to optimal. A greedy algorithm works if a problem exhibits the following two properties:
1. Greedy Choice Property: A globally optimal solution can be reached at by creating a locally optimal solution. In other words, an optimal solution can be obtained by creating "greedy" choices.
2. Optimal substructure: Optimal solutions contain optimal sub solutions. In other words, answers to subproblems of an optimal solution are optimal.

1i) Define Polynomial time.

Definition: If we produce an output according to the given input within a specific amount of time such as within a minute, hours. This is known as Polynomial time.

An algorithm is said to be solvable in polynomial time if the number of steps required to complete the algorithm for a given input is [image: O(n^k)] for some nonnegative integer [image: k], where [image: n] is the complexity of the input. Polynomial-time algorithms are said to be "fast." Most familiar mathematical operations such as addition, subtraction, multiplication, and division, as well as computing square roots, powers, and logarithms, can be performed in polynomial time. Computing the digits of most interesting mathematical constants, including [image: pi] and [image: e], can also be done in polynomial time.

1J) Define NP Completeness
A decision problem L is NP-Hard if
L' ≤p L for all L' ϵ NP.
Definition: L is NP-complete if
1. L ϵ NP and
2. L' ≤ p L for some known NP-complete problem L.' Given this formal definition, the complexity classes are:
P: is the set of decision problems that are solvable in polynomial time.
NP: is the set of decision problems that can be verified in polynomial time.
NP-Hard: L is NP-hard if for all L' ϵ NP, L' ≤p L. Thus if we can solve L in polynomial time, we can solve all NP problems in polynomial time.
NP-Complete L is NP-complete if
1. L ϵ NP and
2. L is NP-hard
If any NP-complete problem is solvable in polynomial time, then every NP-Complete problem is also solvable in polynomial time. Conversely, if we can prove that any NP-Complete problem cannot be solved in polynomial time, every NP-Complete problem cannot be solvable in polynomial time.

2a) Explain Binary search tree Algorithm with example.
A Binary Search tree is organized in a Binary Tree. Such a tree can be defined by a linked data structure in which a particular node is an object. In addition to a key field, each node contains field left, right, and p that point to the nodes corresponding to its left child, its right child, and its parent, respectively. If a child or parent is missing, the appropriate field contains the value NIL. The root node is the only node in the tree whose parent field is Nil.
Binary Search Tree is a node-based binary tree data structure which has the following properties:
· The left subtree of a node contains only nodes with keys lesser than the node’s key.
· The right subtree of a node contains only nodes with keys greater than the node’s key.
· The left and right subtree each must also be a binary search tree.

[image: DAA Binary Search Trees]
In this tree key [x] = 15
· If y is a node in the left subtree of x, then key [y] = 5.
1. i.e. key [y] ≤ key[x].
· If y is a node in the right subtree of x, then key [y] = 20.
1. i.e. key [x] ≤ key[y].

Traversal in Binary Search Trees:
1. In-Order-Tree-Walk (x): Always prints keys in binary search tree in sorted order.
INORDER-TREE-WALK (x) - Running time is θ(n)
 1. If x ≠ NIL.
 2. then INORDER-TREE-WALK (left [x])
 3. print key [x]
 4. INORDER-TREE-WALK (right [x])

2. PREORDER-TREE-WALK (x): In which we visit the root node before the nodes in either subtree.
PREORDER-TREE-WALK (x):
 1. If x ≠ NIL.
 2. then print key [x]
 3. PREORDER-TREE-WALK (left [x]).
 4. PREORDER-TREE-WALK (right [x]).

3. POSTORDER-TREE-WALK (x): In which we visit the root node after the nodes in its subtree.
POSTORDER-TREE-WALK (x):
 1. If x ≠ NIL.
 2. then POSTORDER-TREE-WALK (left [x]).
 3. POSTORDER-TREE-WALK (right [x]).
 4. print key [x]

Querying a Binary Search Trees:
1. Searching: The TREE-SEARCH (x, k) algorithm searches the tree node at x for a node whose key value equal to k. It returns a pointer to the node if it exists otherwise NIL.
TREE-SEARCH (x, k)
 1. If x = NIL or k = key [x].
 2. then return x.
 3. If k < key [x].
 4. then return TREE-SEARCH (left [x], k)
 5. else return TREE-SEARCH (right [x], k)
Clearly, this algorithm runs in O (h) time where h is the height of the tree. The iterative version of the above algorithm is very easy to implement

ITERATIVE-TREE- SEARCH (x, k)
 1. while x ≠ NIL and k ≠ key [k].
 2. do if k < key [x].
 3. then x ← left [x].
 4. else x ← right [x].
 5. return x.

2. Minimum and Maximum: An item in a binary search tree whose key is a minimum can always be found by following left child pointers from the root until a NIL is encountered. The following procedure returns a pointer to the minimum element in the subtree rooted at a given node x.
TREE- MINIMUM (x)
 1. While left [x] ≠ NIL.
 2. do x←left [x].
 3. return x.
TREE-MAXIMUM (x)
 1. While right [x] ≠ NIL
 2. do x←right [x].
 3. return x.

4. Insertion in Binary Search Tree: To insert a new value into a binary search tree T, we use the procedure TREE-INSERT. The procedure takes a node ´ for which key [z] = v, left [z] NIL, and right [z] = NIL. It modifies T and some of the attributes of z in such a way that it inserts into an appropriate position in the tree.
TREE-INSERT (T, z)
 1. y ←NIL.
 2. x←root [T]
 3. while x ≠ NIL.
 4. do y←x
 5. if key [z]< key [x]
 6. then x←left [x].
 7. else x←right [x].
 8. p [z]←y
 9. if y = NIL.
 10. then root [T]←z
 11. else if key [z] < key [y]
 12. then left [y]←z

[image: DAA Binary Search Trees]

Suppose we want to insert an item with key 13 into a Binary Search Tree.
1. x = 1
2. y = 1 as x ≠ NIL.
3. Key [z] < key [x]
4. 13 < not equal to 12.
5. x ←right [x].
6. x ←3
7. Again x ≠ NIL
8. y ←3
9. key [z] < key [x]
10. 13 < 18
11. x←left [x]
12. x←6
13. Again x ≠ NIL, y←6
14. 13 < 15
15. x←left [x]
16. x←NIL
17. p [z]←6

Now our node z will be either left or right child of its parent (y).
1. key [z] < key [y]
2. 13 < 15
3. Left [y] ← z
4. Left [6] ← z
So, insert a node in the left of node index at 6.

5. Deletion in Binary Search Tree: When Deleting a node from a tree it is essential that any relationships, implicit in the tree can be maintained. The deletion of nodes from a binary search tree will be considered:
There are three distinct cases:
1. Nodes with no children: This case is trivial. Simply set the parent's pointer to the node to be deleted to nil and delete the node.
2. Nodes with one child: When z has no left child then we replace z by its right child which may or may not be NIL. And when z has no right child, then we replace z with its right child.
3. Nodes with both Childs: When z has both left and right child. We find z's successor y, which lies in right z's right subtree and has no left child (the successor of z will be a node with minimum value its right subtree and so it has no left child).
· If y is z's right child, then we replace z.
· Otherwise, y lies within z's right subtree but not z's right child. In this case, we first replace z by its own right child and the replace z by y.
TREE-DELETE (T, z)
 1. If left [z] = NIL or right [z] = NIL.
 2. Then y ← z
 3. Else y ← TREE- SUCCESSOR (z)
 4. If left [y] ≠ NIL.
 5. Then x ← left [y]
 6. Else x ← right [y]
 7. If x ≠NIL
 8. Then p[x] ← p [y]
 9. If p[y] = NIL.
 10. Then root [T] ← x
 11. Else if y = left [p[y]]
 12. Then left [p[y]] ← x
 13. Else right [p[y]] ← y
 14. If y ≠ z.
 15. Then key [z] ← key [y]
 16. If y has other fields, copy them, too.
 17. Return y
The Procedure runs in O (h) time on a tree of height h.
For Example: Deleting a node z from a binary search tree. Node z may be the root, a left child of node q, or a right child of q.
[image: DAA Binary Search Trees]
Z has the only right child.
[image: DAA Binary Search Trees]
Z has the only left child. We replace z by l.

2b) Describe how to construct point Quad Tree with example.
Quadtrees are trees used to efficiently store data of points on a two-dimensional space. In this tree, each node has at most four children.
We can construct a quadtree from a two-dimensional area using the following steps:
1. Divide the current two dimensional space into four boxes.
2. If a box contains one or more points in it, create a child object, storing in it the two dimensional space of the box
3. If a box does not contain any points, do not create a child for it
4. Recurse for each of the children.
Quadtrees are used in image compression, where each node contains the average colour of each of its children. The deeper you traverse in the tree, the more the detail of the image.
Quadtrees are also used in searching for nodes in a two-dimensional area. For instance, if you wanted to find the closest point to given coordinates, you can do it using quadtrees.
Insert Function
The insert functions is used to insert a node into an existing Quad Tree. This function first checks whether the given node is within the boundaries of the current quad. If it is not, then we immediately cease the insertion. If it is within the boundaries, we select the appropriate child to contain this node based on its location.
This function is O(Log N) where N is the size of distance.

Search Function
The search function is used to locate a node in the given quad. It can also be modified to return the closest node to the given point. This function is implemented by taking the given point, comparing with the boundaries of the child quads and recursing.
This function is O(Log N) where N is size of distance.

[image: Example of a PR quadtree]
2c) Write in details about asymptotic notation
In designing of Algorithm, complexity analysis of an algorithm is an essential aspect. Mainly, algorithmic complexity is concerned about its performance, how fast or slow it works.

The complexity of an algorithm describes the efficiency of the algorithm in terms of the amount of the memory required to process the data and the processing time.
Complexity of an algorithm is analyzed in two perspectives: Time and Space.

Time Complexity: It’s a function describing the amount of time required to run an algorithm in terms of the size of the input.
Space Complexity: It’s a function describing the amount of memory an algorithm takes in terms of the size of input to the algorithm.

Asymptotic Notations
Execution time of an algorithm depends on the instruction set, processor speed, disk I/O speed, etc. Hence, we estimate the efficiency of an algorithm asymptotically.

Time function of an algorithm is represented by T(n), where n is the input size.
Different types of asymptotic notations are used to represent the complexity of an algorithm. Following asymptotic notations are used to calculate the running time complexity of an algorithm.
· O − Big Oh
· Ω − Big omega
· θ − Big theta
· o − Little Oh
· ω − Little omega

Big O Notation:
The Big O notation defines an upper bound of an algorithm, it bounds a function only from above. For example, consider the case of Insertion Sort. It takes linear time in best case and quadratic time in worst case. We can safely say that the time complexity of Insertion sort is O(n^2). Note that O(n^2) also covers linear time.

The Big O notation is useful when we only have upper bound on time complexity of an algorithm. Many times we easily find an upper bound by simply looking at the algorithm.
O(f(n)) = { g(n): there exist positive constants c and n0 such that 0 ≤ f(n) ≤ c*g(n) for all n >= n0}
[image: Big O Notation][image: Omega Notation]
		Big Oh Notation, Ο 				Omega Notation, Ω

Ω Notation
The notation Ω(n) is the formal way to express the lower bound of an algorithm's running time. It measures the best case time complexity or the best amount of time an algorithm can possibly take to complete.
For example, for a function f(n)
Ω(f(n)) ≥ { g(n) : there exists c > 0 and n0 such that 0 ≤ g(n) ≤ c.f(n) for all n > n0. }

Theta Notation, θ
The notation θ(n) is the formal way to express both the lower bound and the upper bound of an algorithm's running time. It is represented as follows −
θ(f(n)) = { g(n) if and only if g(n) = Ο(f(n)) and g(n) = Ω(f(n)) for all n > n0. }

[image: Theta Notation]
A simple way to get Theta notation of an expression is to drop low order terms and ignore leading constants. For example, consider the following expression.

Little ο
Big-Ο is used as a tight upper-bound on the growth of an algorithm’s effort (this effort is described by the function f(n)), even though, as written, it can also be a loose upper-bound. “Little-ο” (ο()) notation is used to describe an upper-bound that cannot be tight.

Definition : Let f(n) and g(n) be functions that map positive integers to positive real numbers. We say that f(n) is ο(g(n)) (or f(n) Ε ο(g(n))) if for any real constant c > 0, there exists an integer constant n0 ≥ 1 such that 0 ≤ f(n) < c*g(n).

Its means little o() means loose upper-bound of f(n).

Little ω
Definition : Let f(n) and g(n) be functions that map positive integers to positive real numbers. We say that f(n) is ω(g(n)) (or f(n) ∈ ω(g(n))) if for any real constant c > 0, there exists an integer constant n0 ≥ 1 such that f(n) > c * g(n) ≥ 0 for every integer n ≥ n0.

f(n) has a higher growth rate than g(n) so main difference between Big Omega (Ω) and little omega (ω) lies in their definitions.In the case of Big Omega f(n)=Ω(g(n)) and the bound is 0<=cg(n)<=f(n), but in case of little omega, it is true for 0<=c*g(n)<f(n).

we use ω notation to denote a lower bound that is not asymptotically tight. and, f(n) ∈ ω(g(n)) if and only if g(n) ∈ ο((f(n)).

2d) Explain K-d Tree algorithm with example.
A K-D Tree(also called as K-Dimensional Tree) is a binary search tree where data in each node is a K-Dimensional point in space. In short, it is a space partitioning(details below) data structure for organizing points in a K-Dimensional space.

A non-leaf node in K-D tree divides the space into two parts, called as half-spaces.
Points to the left of this space are represented by the left subtree of that node and points to the right of the space are represented by the right subtree. We will soon be explaining the concept on how the space is divided and tree is formed.

For the sake of simplicity, let us understand a 2-D Tree with an example.
The root would have an x-aligned plane, the root’s children would both have y-aligned planes, the root’s grandchildren would all have x-aligned planes, and the root’s great-grandchildren would all have y-aligned planes and so on.

Generalization:
Let us number the planes as 0, 1, 2, …(K – 1). From the above example, it is quite clear that a point (node) at depth D will have A aligned plane where A is calculated as:
A = D mod K
Creation of a 2-D Tree:
Consider following points in a 2-D plane:
(3, 6), (17, 15), (13, 15), (6, 12), (9, 1), (2, 7), (10, 19)
1. Insert (3, 6): Since tree is empty, make it the root node.
2. Insert (17, 15): Compare it with root node point. Since root node is X-aligned, the X-coordinate value will be compared to determine if it lies in the rightsubtree or in the right subtree. This point will be Y-aligned.
3. Insert (13, 15): X-value of this point is greater than X-value of point in root node. So, this will lie in the right subtree of (3, 6). Again Compare Y-value of this point with the Y-value of point (17, 15) (Why?). Since, they are equal, this point will lie in the right subtree of (17, 15). This point will be X-aligned.
4. Insert (6, 12): X-value of this point is greater than X-value of point in root node. So, this will lie in the right subtree of (3, 6). Again Compare Y-value of this point with the Y-value of point (17, 15) (Why?). Since, 12 < 15, this point will lie in the left subtree of (17, 15). This point will be X-aligned.
5. Insert (9, 1):Similarly, this point will lie in the right of (6, 12).
6. Insert (2, 7):Similarly, this point will lie in the left of (3, 6).
7. Insert (10, 19): Similarly, this point will lie in the left of (13, 15).
[image: ktree_1]
How is space partitioned?

[image: https://www.geeksforgeeks.org/wp-content/uploads/ktree_8.png]

2e) compare and contrast Red Black tree and AVL Tree
Red Black Tree:
[image: Red Black Tree]
Properties:
1. Self-Balancing is provided by painting each node with one two colors(Red or Black).
2. When Tree is modified, new tree is subsequently rearranged and repainted.
3. It requires 1 bit of color information for each node in tree.

Constraints maintained by Red Black Tree:
1. Root is always black.
2. All NULL leaves are black, both children of red node are black.
3. Every simple path from a given node to any of its descendant leaves contains the same number of black
nodes.
4. Path form root to farthest leaf is no more than twice as long as path from root to nearest leaf.

AVL(Adelson-Velskii and Landis) Tree
[image: https://media.geeksforgeeks.org/wp-content/uploads/AVL.png]
Properties:
· Height difference of left and right subtree of node should be less than 2.
· Re-balancing is done when heights of two child subtrees of a node differ by more than one.
· Faster retrievals as strictly balanced.

Difference:
· AVL trees provide faster lookups than Red Black Trees because they are more strictly balanced.
· Red Black Trees provide faster insertion and removal operations than AVL trees as fewer rotations are done due to relatively relaxed balancing.
· AVL trees store balance factors or heights with each node, thus requires storage for an integer per node whereas Red Black Tree requires only 1 bit of information per node.
· Red Black Trees are used in most of the language libraries like map, multimap, multiset in C++ whereas AVL trees are used in databases where faster retrievals are required.

2f) Describe Floyd-Wrshall Algorithm with example.
Floyd-Warshall Algorithm
· Floyd-Warshall Algorithm is an algorithm for solving All Pairs Shortest path problem which gives the shortest path between every pair of vertices of the given graph.
· Floyd-Warshall Algorithm is an example of dynamic programming.
· The main advantage of Floyd-Warshall Algorithm is that it is extremely simple and easy to implement.

Algorithm-
Create a |V| x |V| matrix
For each cell (i,j) in M do-
if i = = j
	M[i][j] = 0 // For all diagonal elements, value = 0
if (i , j) is an edge in E
	M[i][j] = weight(i,j) // If there exists a direct edge between the vertices, value = weight of edge
else
	M[i][j] = infinity // If there is no direct edge between the vertices, value = ∞
for k from 1 to |V|
	for i from 1 to |V|
		for j from 1 to |V|
			if M[i][j] > M[i][k] + M[k][j]
				M[i][j] = M[i][k] + M[k][j]

Time Complexity-
· Floyd Warshall Algorithm consists of three loops over all nodes.
· The inner most loop consists of only operations of a constant complexity.
· Hence, the asymptotic complexity of Floyd-Warshall algorithm is O(n3), where n is the number of nodes in the given graph.

When Floyd- Warshall Algorithm is used?

· Floyd-Warshall Algorithm is best suited for dense graphs since its complexity depends only on the number of vertices in the graph.
· For sparse graphs, Johnson’s Algorithm is more suitable.

Example: Input:
 graph[][] = { {0, 5, INF, 10},
 {INF, 0, 3, INF},
 {INF, INF, 0, 1},
 {INF, INF, INF, 0} }

which represents the following graph
 10
 (0)------->(3)
 | /|\
 5 | |
 | | 1
 \|/ |
 (1)------->(2)
 3
Note that the value of graph[i][j] is 0 if i is equal to j
And graph[i][j] is INF (infinite) if there is no edge from vertex i to j.

Output:
Shortest distance matrix
 0 5 8 9
 INF 0 3 4
 INF INF 0 1
 INF INF INF 0
Consider the following directed weighted graph-
[image: https://www.gatevidyalay.com/wp-content/uploads/2018/07/Floyd-Warshall-Algorithm.png]

Using Floyd-Warshall Algorithm, find the shortest path distance between every pair of vertices.
Solution-
Step-01:

· Remove all the self loops and parallel edges (keeping the edge with lowest weight) from the graph if any.
· In our case, we don’t have any self edge and parallel edge.
Step-02:
Now, write the initial distance matrix representing the distance between every pair of vertices as mentioned in the given graph in the form of weights.
· For diagonal elements (representing self-loops), value = 0
· For vertices having a direct edge between them, value = weight of that edge
· For vertices having no direct edges between them, value = ∞

[image: https://www.gatevidyalay.com/wp-content/uploads/2018/07/Floyd-Warshall-Algorithm-Step-01.png]

Step-03:
From step-03, we will start our actual solution.
The four matrices are-
[image:][image:]

The last matrix D4 represents the shortest path distance between every pair of vertices.

2G) Compare Knapsack problem and 0/1 Knapsack problem
The knapsack problem is in combinatorial optimization problem. Based on the nature of the items, Knapsack problems are categorized as
· Fractional Knapsack
· 0/1 Knapsack

Fractional Knapsack
Fractions of items can be taken rather than having to make binary (0-1) choices for each item. Fractional Knapsack Problem can be solvable by greedy strategy whereas 0 - 1 problem is not.

Steps to solve the Fractional Problem:
1. Compute the value per pound [image: Fractional Knapsack Problem] for each item.
2. Obeying a Greedy Strategy, we take as possible of the item with the highest value per pound.
3. If the supply of that element is exhausted and we can still carry more, we take as much as possible of the element with the next value per pound.
4. Sorting, the items by value per pound, the greedy algorithm run in O (n log n) time.
5. Fractional Knapsack

Fractional Knapsack (Array v, Array w, int W)
1. for i= 1 to size (v)
2. do p [i] = v [i] / w [i]
3. Sort-Descending (p)
4. i ← 1
5. while (W>0)
6. do amount = min (W, w [i])
7. solution [i] = amount
8. W= W-amount
9. i ← i+1
10. return solution

Fractional knapsack problem can be solved by Greedy Strategy where as 0 /1 problem is not.
It can be solved by Dynamic Programming Approach.

0/1 Knapsack Problem:
In this item cannot be broken which means thief should take the item as a whole or should leave it. That's why it is called 0/1 knapsack Problem.
· Each item is taken or not taken.
· Cannot take a fractional amount of an item taken or take an item more than once.
· It cannot be solved by the Greedy Approach because it is enable to fill the knapsack to capacity.
· Greedy Approach doesn't ensure an Optimal Solution.

KNAPSACK (n, W)
 1. for w = 0, W
 2. do V [0,w] ← 0
 3. for i=0, n
 4. do V [i, 0] ← 0
 5. for w = 0, W
 6. do if (wi≤ w & vi + V [i-1, w - wi]> V [i -1,W])
 7. then V [i, W] ← vi + V [i - 1, w - wi]
 8. else V [i, W] ← V [i - 1, w]

2h) Define Geometric Algorithm and explain any one type of Geometric Algorithm
These algorithms are designed to solve Geometric Problems. They requires in-depth knowledge of different mathematical subjects like combinatorics, topology, algebra, differential geometry etc.
For Example: Comparing Slopes of two lines, Finding Equation of a plane etc.

Closest Pair of Points using Divide and Conquer algorithm
We are given an array of n points in the plane, and the problem is to find out the closest pair of points in the array. This problem arises in a number of applications. For example, in air-traffic control, you may want to monitor planes that come too close together, since this may indicate a possible collision. Recall the following formula for distance between two points p and q.
[image:]
The Brute force solution is O(n^2), compute the distance between each pair and return the smallest. We can calculate the smallest distance in O(nLogn) time using Divide and Conquer strategy. In this post, a O(n x (Logn)^2) approach is discussed.

Algorithm
Following are the detailed steps of a O(n (Logn)^2) algortihm.
Input: An array of n points P[]
Output: The smallest distance between two points in the given array.
As a pre-processing step, the input array is sorted according to x coordinates.
1) Find the middle point in the sorted array, we can take P[n/2] as middle point.
2) Divide the given array in two halves. The first subarray contains points from P[0] to P[n/2]. The second subarray contains points from P[n/2+1] to P[n-1].
3) Recursively find the smallest distances in both subarrays. Let the distances be dl and dr. Find the minimum of dl and dr. Let the minimum be d.
[image: https://media.geeksforgeeks.org/wp-content/uploads/mindis.png]
4) From the above 3 steps, we have an upper bound d of minimum distance. Now we need to consider the pairs such that one point in pair is from the left half and the other is from the right half. Consider the vertical line passing through P[n/2] and find all points whose x coordinate is closer than d to the middle vertical line. Build an array strip[] of all such points.
[image: https://media.geeksforgeeks.org/wp-content/uploads/closepair.png]
5)Sort the array strip[] according to y coordinates. This step is O(nLogn). It can be optimized to O(n) by recursively sorting and merging.
6) Find the smallest distance in strip[]. This is tricky. From the first look, it seems to be a O(n^2) step, but it is actually O(n). It can be proved geometrically that for every point in the strip, we only need to check at most 7 points after it (note that strip is sorted according to Y coordinate).
7) Finally return the minimum of d and distance calculated in the above step (step 6)

2I) State Cooks Theorem. Illustrate with one example.
 Cook’s Theorem states that Any NP problem can be converted to SAT in polynomial time. A decision problem is in NP if it can be solved by a non-deterministic algorithm in polynomial time.

Proof
There are two parts to proving that the Boolean satisfy ability problem (SAT) is NP-complete. One is to show that SAT is an NP problem. The other is to show that every NP problem can be reduced to an instance of a SAT problem by a polynomial-time many-one reduction.
SAT is in NP because any assignment of Boolean values to Boolean variables that is claimed to satisfy the given expression can be verified in polynomial time by a deterministic Turing machine. (The statements verifiable in polynomial time by a deterministic Turing machine and solvable in polynomial time by a non-deterministic Turing machine are totally equivalent, and the proof can be found in many textbooks, for example Sipser's Introduction to the Theory of Computation, section 7.3., as well as in the Wikipedia article on NP).
Now suppose that a given problem in NP can be solved by the nondeterministic Turing machine M = (Q, Σ, s, F, δ), where Q is the set of states, Σ is the alphabet of tape symbols, s ∈ Q is the initial state, F ⊆ Q is the set of accepting states, and δ ⊆ ((Q \ F) × Σ) × (Q × Σ × {−1, +1}) is the transition relation. Suppose further that M accepts or rejects an instance of the problem in time p(n) where n is the size of the instance and p is a polynomial function.
For each input, I, we specify a Boolean expression which is satisfy able if and only if the machine M accepts I.
The Boolean expression uses the variables set out in the following table. Here, q ∈ Q, −p(n) ≤ i ≤ p(n), j ∈ Σ, and 0 ≤ k ≤ p(n).
	Variables
	Intended interpretation
	How many?

	Ti,j,k
	True if tape cell i contains symbol j at step k of the computation.
	O(p(n)2)

	Hi,k
	True if the M's read/write head is at tape cell i at step k of the computation.
	O(p(n)2)

	Qq,k
	True if M is in state q at step k of the computation.
	O(p(n))

If there is an accepting computation for M on input I, then B is satisfiable by assigning Ti,j,k, Hi,k and Qi,k their intended interpretations. On the other hand, if B is satisfiable, then there is an accepting computation for M on input I that
follows the steps indicated by the assignments to the variables.

There are O(p(n)2) Boolean variables, each encodeable in space O(log p(n)). The number of clauses is O(p(n)3) so the size of B is O(log(p(n))p(n)3). Thus the transformation is certainly a polynomial-time many-one reduction, as required.

2J) Explain the procedure how to construct Minimum cost spanning Tree
Minimum Spanning Tree
A Minimum Spanning Tree (MST) is a subset of edges of a connected weighted undirected graph that connects all the vertices together with the minimum possible total edge weight. To derive an MST, Prim’s algorithm or Kruskal’s algorithm can be used.

Kruskal's Algorithm:
An algorithm to construct a Minimum Spanning Tree for a connected weighted graph. It is a Greedy Algorithm. The Greedy Choice is to put the smallest weight edge that does not because a cycle in the MST constructed so far.
If the graph is not linked, then it finds a Minimum Spanning Tree.

Steps for finding MST using Kruskal's Algorithm:
1. Arrange the edge of G in order of increasing weight.
2. Starting only with the vertices of G and proceeding sequentially add each edge which does not result in a cycle, until (n - 1) edges are used.
3. EXIT.

For Example: Find the Minimum Spanning Tree of the following graph using Kruskal's algorithm.
[image: Kruskal's Algorithm]

Solution: First we initialize the set A to the empty set and create |v| trees, one containing each vertex with MAKE-SET procedure. Then sort the edges in E into order by non-decreasing weight.
There are 9 vertices and 12 edges. So MST formed (9-1) = 8 edges
[image: Kruskal's Algorithm]

Now, check for each edge (u, v) whether the endpoints u and v belong to the same tree. If they do then the edge (u, v) cannot be supplementary. Otherwise, the two vertices belong to different trees, and the edge (u, v) is added to A, and the vertices in two trees are merged in by union procedure.
Step1: So, first take (h, g) edge
[image: Kruskal's Algorithm]
Step 2: then (g, f) edge.
[image: Kruskal's Algorithm]

Step 3: then (a, b) and (i, g) edges are considered, and the forest becomes
[image: Kruskal's Algorithm]

Step 4: Now, edge (h, i). Both h and i vertices are in the same set. Thus it creates a cycle. So this edge is discarded.
 Then edge (c, d), (b, c), (a, h), (d, e), (e, f) are considered, and the forest becomes.
[image: Kruskal's Algorithm]

Step 5: In (e, f) edge both endpoints e and f exist in the same tree so discarded this edge. Then (b, h) edge, it also creates a cycle.
Step 6: After that edge (d, f) and the final spanning tree is shown as in dark lines.
[image: Kruskal's Algorithm]

Step 7: This step will be required Minimum Spanning Tree because it contains all the 9 vertices and (9 - 1) = 8 edges
1. e → f, b → h, d → f [cycle will be formed]
[image: Kruskal's Algorithm]
Minimum Cost MST

2K) Describe how to verify the Polynomial-Time for an algorithm

Consider the Hamiltonian cycle problem. Given an undirected graph G, does G have a cycle that visits each vertex exactly once? There is no known polynomial time algorithm for this dispute.
[image: Polynomial Time Verification]
Let us understand that a graph did have a Hamiltonian cycle. It would be easy for someone to convince of this. They would similarly say: "the period is hv3, v7, v1....v13i.
We could then inspect the graph and check that this is indeed a legal cycle and that it visits all of the vertices of the graph exactly once. Thus, even though we know of no efficient way to solve the Hamiltonian cycle problem, there is a beneficial way to verify that a given cycle is indeed a Hamiltonian cycle.

Relation of P and NP classes
1. P contains in NP
2. P=NP
1. Observe that P contains in NP. In other words, if we can solve a problem in polynomial time, we can indeed verify the solution in polynomial time. More formally, we do not need to see a certificate (there is no need to specify the vertex/intermediate of the specific path) to solve the problem; we can explain it in polynomial time anyway.
2. However, it is not known whether P = NP. It seems you can verify and produce an output of the set of decision-based problems in NP classes in a polynomial time which is impossible because according to the definition of NP classes you can verify the solution within the polynomial time. So this relation can never be held.

Reductions:
The class NP-complete (NPC) problems consist of a set of decision problems (a subset of class NP) that no one knows how to solve efficiently. But if there were a polynomial solution for even a single NP-complete problem, then every problem in NPC will be solvable in polynomial time. For this, we need the concept of reductions.
Suppose there are two problems, A and B. You know that it is impossible to solve problem A in polynomial time. You want to prove that B cannot be explained in polynomial time. We want to show that (A ∉ P) => (B ∉ P)

2L) Explain the proof of NP Completeness.
A decision problem L is NP-Hard if
L' ≤p L for all L' ϵ NP.
Definition: L is NP-complete if
1. L ϵ NP and
2. L' ≤ p L for some known NP-complete problem L.' Given this formal definition, the complexity classes are:
P: is the set of decision problems that are solvable in polynomial time.
NP: is the set of decision problems that can be verified in polynomial time.
NP-Hard: L is NP-hard if for all L' ϵ NP, L' ≤p L. Thus if we can solve L in polynomial time, we can solve all NP problems in polynomial time.
NP-Complete L is NP-complete if
1. L ϵ NP and
2. L is NP-hard
If any NP-complete problem is solvable in polynomial time, then every NP-Complete problem is also solvable in polynomial time. Conversely, if we can prove that any NP-Complete problem cannot be solved in polynomial time, every NP-Complete problem cannot be solvable in polynomial time.

Reductions
Concept: - If the solution of NPC problem does not exist then the conversion from one NPC problem to another NPC problem within the polynomial time. For this, you need the concept of reduction. If a solution of the one NPC problem exists within the polynomial time, then the rest of the problem can also give the solution in polynomial time (but it's hard to believe). For this, you need the concept of reduction.

[image: File:Max-Heap.svg]3) Describe various type of heap data structure in details.
a heap is a specialized tree-based
data structure that satisfies the heap property: If A is a
parent node of B then key(A) is ordered with respect to
key(B) with the same ordering applying across the heap.
In a max heap the keys of parent nodes are always greater
than or equal to those of the children and the highest key
exists in the root node. In a min heap the keys of parent
nodes are always less than or equal to those of the
children and the root node has the lowest key.

Various type of Heaps data structure are
Min-Max heap
Leftist heaps
Binomial heaps
 Fibonacci heaps
Skew heaps

Min-Max heap
Min-Heap − Where the value of the root node is less than or equal to either of its children.
Max-Heap − Where the value of the root node is greater than or equal to either of its children.
[image: Max Heap Example] [image: Max Heap Example]
Max Heap Construction Algorithm
Step 1 − Create a new node at the end of heap.
Step 2 − Assign new value to the node.
Step 3 − Compare the value of this child node with its parent.
Step 4 − If value of parent is less than child, then swap them.
Step 5 − Repeat step 3 & 4 until Heap property holds.

In Min Heap construction algorithm, we expect the value of the parent node to be less than that of the child node

Max Heap Deletion Algorithm
Let us derive an algorithm to delete from max heap. Deletion in Max (or Min) Heap always happens at the root to remove the Maximum (or minimum) value.
Step 1 − Remove root node.
Step 2 − Move the last element of last level to root.
Step 3 − Compare the value of this child node with its parent.
Step 4 − If value of parent is less than child, then swap them.
Step 5 − Repeat step 3 & 4 until Heap property holds.

Binomial Heap
The main application of Binary Heap is as implement priority queue. Binomial Heap is an extension of Binary Heap that provides faster union or merge operation together with other operations provided by Binary Heap. A Binomial Heap is a collection of Binomial Trees

What is a Binomial Tree?
A Binomial heap is implemented as a collection of binomial trees (compare with a binary heap, which has a shape of
a single binary tree). A binomial tree is defined recursively
A Binomial Tree of order 0 has 1 node. A Binomial Tree of order k can be constructed by taking two binomial trees of order k-1 and making one as leftmost child or other.
A Binomial Tree of order k has following properties.
a) It has exactly 2k nodes.
b) It has depth as k.
c) There are exactly kCi nodes at depth i for i = 0, 1, . . . , k.
d) The root has degree k and children of root are themselves Binomial Trees with order k-1, k-2,.. 0 from left to right.
 (
12------------10--------------------20
 / \ / | \
 15 50 70 50 40
 | / | |
 30 80 85 65
 |
 100
A Binomial Heap with 13 nodes. It is a collection of 3
Binomial Trees of orders 0, 2 and 3 from left to right.
 10--------------------20
 / \ / | \
 15 50 70 50 40
 | / | |
 30 80 85 65
 |
 100
)

Implementation of Binomial Heap
1. insert(H, k): Inserts a key ‘k’ to Binomial Heap ‘H’. This operation first creates a Binomial Heap with single key ‘k’, then calls union on H and the new Binomial heap.
2. getMin(H): A simple way to getMin() is to traverse the list of root of Binomial Trees and return the minimum key. This implementation requires O(Logn) time. It can be optimized to O(1) by maintaining a pointer to minimum key root.
3. extractMin(H): This operation also uses union(). We first call getMin() to find the minimum key Binomial Tree, then we remove the node and create a new Binomial Heap by connecting all subtrees of the removed minimum node. Finally we call union() on H and the newly created Binomial Heap. This operation requires O(Logn) time.
4. delete(H): Like Binary Heap, delete operation first reduces the key to minus infinite, then calls extractMin().
5. decreaseKey(H): decreaseKey() is also similar to Binary Heap. We compare the decreases key with it parent and if parent’s key is more, we swap keys and recur for parent. We stop when we either reach a node whose parent has smaller key or we hit the root node. Time complexity of decreaseKey() is O(Logn)

Fibonacci Heap
Heaps are mainly used for implementing priority queue. In terms of Time Complexity, Fibonacci Heap beats both Binary and Binomial Heaps.
Like Binomial Heap, Fibonacci Heap is a collection of trees with min-heap or max-heap property. In Fibonacci Heap, trees can can have any shape even all trees can be single nodes (This is unlike Binomial Heap where every tree has to be Binomial Tree). Fibonacci Heap maintains a pointer to minimum value (which is root of a tree). All tree roots are connected using circular doubly linked list, so all of them can be accessed using single ‘min’ pointer.
Below is an example Fibonacci Heap
[image: FibonacciHeap]
Insertion: To insert a node in a Fibonacci heap H, the following algorithm is followed:
1. Create a new node ‘x’.
2. Check whether heap H is empty or not.
3. If H is empty then:
· Make x as the only node in the root list.
· Set H(min) pointer to x.
4. Else:
· Insert x into root list and update H(min).
[image: https://cdncontribute.geeksforgeeks.org/wp-content/uploads/fibonacci-heap-insertion.jpg]

Union: Union of two Fibonacci heaps H1 and H2 can be accomplished as follows:
1. Join root lists of Fibonacci heaps H1 and H2 and make a single Fibonacci heap H.
2. If H1(min) < H2(min) then:
· H(min) = H1(min).
3. Else:
· H(min) = H2(min).

Decrease_key(): To decrease the value of any element in the heap, we follow the following algorithm:
 Decrease the value of the node ‘x’ to the new chosen value.
 CASE 1) If min heap property is not violated,
· Update min pointer if necessary.
 CASE 2) If min heap property is violated and parent of ‘x’ is unmarked,
· Cut off the link between ‘x’ and its parent.
· Mark the parent of ‘x’.
· Add tree rooted at ‘x’ to the root list and update min pointer if necessary.
 CASE 3)If min heap property is violated and parent of ‘x’ is marked,
· Cut off the link between ‘x’ and its parent p[x].
· Add ‘x’ to the root list, updating min pointer if necessary.
· Cut off link between p[x] and p[p[x]].
· Add p[x] to the root list, updating min pointer if necessary.
· If p[p[x]] is unmarked, mark it.
· Else, cut off p[p[x]] and repeat steps 4.2 to 4.5, taking p[p[x]] as ‘x’.

Leftist Tree / Leftist Heap
A leftist tree or leftist heap is a priority queue implemented with a variant of a binary heap. Every node has an s-value (or rank or distance) which is the distance to the nearest leaf. In contrast to a binary heap (Which is always a complete binary tree), a leftist tree may be very unbalanced.
[image: lt1]
A leftist tree is a binary tree with properties:
1. Normal Min Heap Property : key(i) >= key(parent(i))
2. Heavier on left side : dist(right(i)) <= dist(left(i)). Here, dist(i) is the number of edges on the shortest path from node i to a leaf node in extended binary tree representation (In this representation, a null child is considered as external or leaf node). The shortest path to a descendant external node is through the right child. Every subtree is also a leftist tree and dist(i) = 1 + dist(right(i)).

From above second property, we can draw two conclusions :
1. The path from root to rightmost leaf is the shortest path from root to a leaf.
2. If the path to rightmost leaf has x nodes, then leftist heap has atleast 2x – 1 nodes. This means the length of path to rightmost leaf is O(log n) for a leftist heap with n nodes.
Operations :
1. The main operation is merge().
2. deleteMin() (or extractMin() can be done by removing root and calling merge() for left and right subtrees.
3. insert() can be done be create a leftist tree with single key (key to be inserted) and calling merge() for given tree and tree with single node.

Detailed Steps for Merge:
1. Compare the roots of two heaps.
2. Push the smaller key into an empty stack, and move to the right child of smaller key.
3. Recursively compare two keys and go on pushing the smaller key onto the stack and move to its right child.
4. Repeat until a null node is reached.
5. Take the last node processed and make it the right child of the node at top of the stack, and convert it to leftist heap if the properties of leftist heap are violated.
6. Recursively go on popping the elements from the stack and making them the right child of new stack top.

Skew Heap
A skew heap (or self – adjusting heap) is a heap data structure implemented as a binary tree. Skew heaps are advantageous because of their ability to merge more quickly than binary heaps. In contrast with binary heaps, there are no structural constraints, so there is no guarantee that the height of the tree is logarithmic. Only two conditions must be satisfied :
1. The general heap order must be there (root is minimum and same is recursively true for subtrees), but balanced property (all levels must be full except the last) is not required.
2. Main operation in Skew Heaps is Merge. We can implement other operations like insert, extractMin(), etc using Merge only.

Example :
1. Consider the skew heap 1 to be
[image: https://cdncontribute.geeksforgeeks.org/wp-content/uploads/1-97-300x230.png]
2. The second heap to be considered
[image: https://cdncontribute.geeksforgeeks.org/wp-content/uploads/2-65-300x247.png]
4. And we obtain the final merged tree as
[image: https://cdncontribute.geeksforgeeks.org/wp-content/uploads/3-67-300x207.png]

Recursive Merge Process :
merge(h1, h2)
1. Let h1 and h2 be the two min skew heaps to be merged. Let h1’s root be smaller than h2’s root (If not smaller, we can swap to get the same).
2. We swap h1->left and h1->right.
3. h1->left = merge(h2, h1->left)

4) Explain B-Tree and B+Tree Algorithm with example. Compare and contrast with advantage and limitation.
[image: File:B-tree.svg]
B-Tree is a self-balancing search tree. In B-trees, internal (non-leaf) nodes
can have a variable number of child
nodes within some pre-defined range.
When data is inserted or removed from
a node, its number of child nodes
changes. In order to maintain the
pre-defined range, internal nodes may
be joined or split. Because a range of
child nodes is permitted, B-trees do not need re-balancing as frequently as other self-balancing search trees, but maywaste some space, since nodes are not entirely full. The lower and upper bounds on the number of child nodes aretypically fixed for a particular implementation. For example, in a 2-3 B-tree (often simply referred to as a 2-3 tree),each internal node may have only 2 or 3 child nodes.

The term B-tree may refer to a specific design or it may refer to a general class of designs. In the narrow sense, a
B-tree stores keys in its internal nodes but need not store those keys in the records at the leaves. The general class
includes variations such as the B+-tree and the B*-tree.
• In the B+-tree, copies of the keys are stored in the internal nodes; the keys and records are stored in leaves; in
addition, a leaf node may include a pointer to the next leaf node to speed sequential access.
• Counted B-trees store, with each pointer within the tree, the number of nodes in the subtree below that pointer.

The B-tree uses all those ideas
The B-tree uses all of the above ideas:
• It keeps records in sorted order for sequential traversing
• It uses a hierarchical index to minimize the number of disk reads
• It uses partially full blocks to speed insertions and deletions
• The index is elegantly adjusted with a recursive algorithm
In addition, a B-tree minimizes waste by making sure the interior nodes are at least ½ full. A B-tree can handle an
arbitrary number of insertions and deletions.

Definition
According to Knuth's definition, a B-tree of order m (the maximum number of children for each node) is a tree which
satisfies the following properties:
1. Every node has at most m children.
2. Every node (except root) has at least ⌈m⁄2⌉ children.
3. The root has at least two children if it is not a leaf node.
4. A non-leaf node with k children contains k−1 keys.
5. All leaves appear in the same level, and carry information.
Each internal node’s elements act as separation values which divide its subtrees. For example, if an internal node has 3 child nodes (or subtrees) then it must have 2 separation values or elements: a1 and a2. All values in the leftmost subtree will be less than a1, all values in the middle subtree will be between a1 and a2, and all values in the rightmost subtree will be greater than a2.

Internal nodes
Internal nodes are all nodes except for leaf nodes and the root node. They are usually represented as an ordered
set of elements and child pointers. Every internal node contains a maximum of U children and a minimum of
L children. Thus, the number of elements is always 1 less than the number of child pointers

The root node
The root node’s number of children has the same upper limit as internal nodes, but has no lower limit. For
example, when there are fewer than L−1 elements in the entire tree, the root will be the only node in the tree,
with no children at all.
Leaf nodes
Leaf nodes have the same restriction on the number of elements, but have no children, and no child pointers.
A B-tree of depth n+1 can hold about U times as many items as a B-tree of depth n, but the cost of search, insert, and delete operations grows with the depth of the tree. As with any balanced tree, the cost grows much more slowly than the number of elements.

Search
Searching is similar to searching a binary search tree. Starting at the root, the tree is recursively traversed from top to bottom. At each level, the search chooses the child pointer (subtree) whose separation values are on either side of the search value. Binary search is typically (but not necessarily) used within nodes to find the separation values and child tree of interest.
Insertion
A B Tree insertion example with eachiteration. The nodes of this B tree have at most 3 children (Knuth order 3).
All insertions start at a leaf node. To insert a new element, search the tree to find the leaf node where the new element should be added. Insert the new element into that node with the following steps:
[image: File:B tree insertion example.png]
1. If the node contains fewer than the maximum legal number of
elements, then there is room for the new element. Insert the new
element in the node, keeping the node's elements ordered.

2. Otherwise the node is full, evenly split it into two nodes so:
1. A single median is chosen from among the leaf's elements and the
new element.
2. Values less than the median are put in the new left node and values
greater than the median are put in the new right node, with the
median acting as a separation value.

3. The separation value is inserted in the node's parent, which may
cause it to be split, and so on. If the node has no parent (i.e., the
node was the root), create a new root above this node (increasing
the height of the tree).

Deletion
Deletion from a leaf node
1. Search for the value to delete
2. If the value's in a leaf node, simply delete it from the node
3. If underflow happens, check siblings, and either transfer a key or fuse the siblings together
4. If deletion happened from right child, retrieve the max value of left child if it has no underflow
5. In vice-versa situation, retrieve the min element from right

Deletion from an internal node
1. If the value is in an internal node, choose a new separator (either the largest element in the left subtree or the
smallest element in the right subtree), remove it from the leaf node it is in, and replace the element to be deleted
with the new separator
2. This has deleted an element from a leaf node, and so is now equivalent to the previous case

Rebalancing after deletion
1. If the right sibling has more than the minimum number of elements
1. Add the separator to the end of the deficient node
2. Replace the separator in the parent with the first element of the right sibling
3. Append the first child of the right sibling as the last child of the deficient node
2. Otherwise, if the left sibling has more than the minimum number of elements
1. Add the separator to the start of the deficient node
2. Replace the separator in the parent with the last element of the left sibling
3. Insert the last child of the left sibling as the first child of the deficient node
3. If both immediate siblings have only the minimum number of elements
1. Create a new node with all the elements from the deficient node, all the elements from one of its siblings, and the separator in the parent between the two combined sibling nodes
2. Remove the separator from the parent, and replace the two children it separated with the combined node
3. If that brings the number of elements in the parent under the minimum, repeat these steps with that deficient node, unless it is the root, since the root is permitted to be deficient
The only other case to account for is when the root has no elements and one child. In this case it is sufficient to replace it with its only child.

[image: BTreeDelet1]

[image: BTreeDelet2]

B+ tree
[image: File:Bplustree.png]In computer science, a B+ tree is a
type of tree which represents sorted
data in a way that allows for efficient
insertion, retrieval and removal of
records, each of which is identified by
a key. It is a dynamic, multilevel index,
with maximum and minimum bounds
on the number of keys in each index
segment (usually called a "block" or
"node"). In a B+ tree, in contrast to a
B-tree, all records are stored at the leaf
level of the tree; only keys are stored
in interior nodes.

Insertion
Perform a search to determine what bucket the new record should go into.
• If the bucket is not full (at most b - 1 entries after the insertion), add the record.
• Otherwise, split the bucket.
• Allocate new leaf and move half the bucket's elements to the new bucket.
• Insert the new leaf's smallest key and address into the parent.
• If the parent is full, split it too.
• Add the middle key to the parent node.
• Repeat until a parent is found that need not split.
• If the root splits, create a new root which has one key and two pointers.
B-trees grow at the root and not at the leaves.
Note that, for a non-leaf node split, we can simply push up the middle key (17). Contrast this with a leaf node split.

Deletion
• Start at root, find leaf L where entry belongs.
• Remove the entry.
• If L is at least half-full, done!
• If L has fewer entries than it should,
• Try to re-distribute, borrowing from sibling (adjacent node with same parent as L).
• If re-distribution fails, merge L and sibling.
• If merge occurred, must delete entry (pointing to L or sibling) from parent of L.
• Merge could propagate to root, decreasing height.

Characteristics
For a b-order B+ tree with h levels of index:
• The maximum number of records stored is[image:]
[image:]

• The minimum number of records stored is
[image:]

• The minimum number of keys is
• The space required to store the tree is [image:]
• Inserting a record requires[image:] operations
• Finding a record requires [image:] operations
• Removing a (previously located) record requires [image:]operations
• Performing a range query with k elements occurring within the range requires [image:]operations
• Performing a pagination query with page size s and page number p requires [image:]operations

Advantage –
A B+ tree with ‘l’ levels can store more entries in its internal nodes compared to a B-tree having the same ‘l’ levels. This accentuates the significant improvement made to the search time for any given key. Having lesser levels and presence of Pnext pointers imply that B+ tree are very quick and efficient in accessing records from disks.

6) Explain any two Internet algorithms with examples and write the advantages and limitation of one over another.
Trie
Trie is an efficient information reTrieval data structure. Using Trie, search complexities can be brought to optimal limit (key length). If we store keys in binary search tree, a well balanced BST will need time proportional to M * log N, where M is maximum string length and N is number of keys in tree. Using Trie, we can search the key in O(M) time. However the penalty is on Trie storage requirements [image: https://media.geeksforgeeks.org/wp-content/cdn-uploads/Trie.png]
Every node of Trie consists of multiple branches. Each branch represents a possible character of keys. We need to mark the last node of every key as end of word node. A Trie node field isEndOfWord is used to distinguish the node as end of word node. A simple structure to represent nodes of the English alphabet can be as following,

// Trie node
struct TrieNode
{
 struct TrieNode *children[ALPHABET_SIZE];
 // isEndOfWord is true if the node
 // represents end of a word
 bool isEndOfWord;
};
Inserting a key into Trie is a simple approach. Every character of the input key is inserted as an individual Trie node. Note that the children is an array of pointers (or references) to next level trie nodes. The key character acts as an index into the array children. If the input key is new or an extension of the existing key, we need to construct non-existing nodes of the key, and mark end of the word for the last node. If the input key is a prefix of the existing key in Trie, we simply mark the last node of the key as the end of a word. The key length determines Trie depth.

Searching for a key is similar to insert operation, however, we only compare the characters and move down. The search can terminate due to the end of a string or lack of key in the trie. In the former case, if the isEndofWord field of the last node is true, then the key exists in the trie. In the second case, the search terminates without examining all the characters of the key, since the key is not present in the trie.
The following picture explains construction of trie using keys given in the example below,
 root
 / \ \
 t a b
 | | |
 h n y
 | | \ |
 e s y e
 / | |
 I r w
 | | |
 r e e
 |
 R

Trie | (Delete)
During delete operation we delete the key in bottom up manner using recursion. The following are possible conditions when deleting key from trie,
1. Key may not be there in trie. Delete operation should not modify trie.
2. Key present as unique key (no part of key contains another key (prefix), nor the key itself is prefix of another key in trie). Delete all the nodes.
3. Key is prefix key of another long key in trie. Unmark the leaf node.
4. Key present in trie, having atleast one other key as prefix key. Delete nodes from end of key until first leaf node of longest prefix key.
Why Trie? :-
1. With Trie, we can insert and find strings in O(L) time where L represent the length of a single word. This is obviously faster than BST. This is also faster than Hashing because of the ways it is implemented. We do not need to compute any hash function. No collision handling is required (like we do in open addressing and separate chaining)
2. Another advantage of Trie is, we can easily print all words in alphabetical order which is not easily possible with hashing.
3. We can efficiently do prefix search (or auto-complete) with Trie.

Issues with Trie :-
The main disadvantage of tries is that they need a lot of memory for storing the strings. For each node we have too many node pointers(equal to number of characters of the alphabet), if space is concerned, then Ternary Search Tree can be preferred for dictionary implementations. In Ternary Search Tree, the time complexity of search operation is O(h) where h is the height of the tree. Ternary Search Trees also supports other operations supported by Trie like prefix search, alphabetical order printing, and nearest neighbor search.
The final conclusion is regarding tries data structure is that they are faster but require huge memory for storing the strings.

Ukkonen’s Suffix Tree
Suffix Tree is very useful in numerous string processing and computational biology problems.
A suffix tree T for a m-character string S is a rooted directed tree with exactly m leaves numbered 1 to m. (Given that last string character is unique in string)
· Root can have zero, one or more children.
· Each internal node, other than the root, has at least two children.
· Each edge is labelled with a nonempty substring of S.
· No two edges coming out of same node can have edge-labels beginning with the same character.

Concatenation of the edge-labels on the path from the root to leaf i gives the suffix of S that starts at position i, i.e. S[i…m].
For string S = xabxac with m = 6, suffix tree will look like following:

It has one root node and two internal nodes and 6 leaf nodes.
String Depth of red path is 1 and it represents suffix c starting at position 6
String Depth of blue path is 4 and it represents suffix bxca starting at position 3
String Depth of green path is 2 and it represents suffix ac starting at position 5
String Depth of orange path is 6 and it represents suffix xabxac starting at position 1

[image: https://media.geeksforgeeks.org/wp-content/cdn-uploads/ukkonen_1_1.png]
 A naive algorithm to build a suffix tree
Given a string S of length m, enter a single edge for suffix S[l ..m]$ (the entire string) into the tree, then successively enter suffix S[i..m]$ into the growing tree, for i increasing from 2 to m. Let Ni denote the intermediate tree that encodes all the suffixes from 1 to i.
So Ni+1 is constructed from Ni as follows:
· Start at the root of Ni
· Find the longest path from the root which matches a prefix of S[i+1..m]$
· Match ends either at the node (say w) or in the middle of an edge [say (u, v)].
· If it is in the middle of an edge (u, v), break the edge (u, v) into two edges by inserting a new node w just after the last character on the edge that matched a character in S[i+l..m] and just before the first character on the edge that mismatched. The new edge (u, w) is labelled with the part of the (u, v) label that matched with S[i+1..m], and the new edge (w, v) is labelled with the remaining part of the (u, v) label.
· Create a new edge (w, i+1) from w to a new leaf labelled i+1 and it labels the new edge with the unmatched part of suffix S[i+1..m]

This takes O(m2) to build the suffix tree for the string S of length m.

String Matching Introduction
String Matching Algorithm is also called "String Searching Algorithm." This is a vital class of string algorithm is declared as "this is the method to find a place where one is several strings are found within the larger string."
Given a text array, T [1.....n], of n character and a pattern array, P [1......m], of m characters. The problems are to find an integer s, called valid shift where 0 ≤ s < n-m and T [s+1......s+m] = P [1......m].

Algorithms used for String Matching:
There are different types of method is used to finding the string
1. The Naive String Matching Algorithm
2. The Rabin-Karp-Algorithm
3. Finite Automata
4. The Knuth-Morris-Pratt Algorithm
5. The Boyer-Moore Algorithm

Naive algorithm for Pattern Searching
The naïve approach tests all the possible placement of Pattern P [1.......m] relative to text T [1......n]. We try shift s = 0, 1.......n-m, successively and for each shift s. Compare T [s+1.......s+m] to P [1......m].
The naïve algorithm finds all valid shifts using a loop that checks the condition P [1.......m] = T [s+1.......s+m] for each of the n - m +1 possible value of s.

NAIVE-STRING-MATCHER (T, P)
 1. n ← length [T]
 2. m ← length [P]
 3. for s ← 0 to n -m
 4. do if P [1.....m] = T [s + 1....s + m]
 5. then print "Pattern occurs with shift" s

Analysis: This for loop from 3 to 5 executes for n-m + 1(we need at least m characters at the end) times and in iteration we are doing m comparisons. So the total complexity is O (n-m+1).

Example:
1. Suppose T = 1011101110
2. P = 111
3. Find all the Valid Shift

Solution:

[image: Naive String Matching Algorithm]

[image: Naive String Matching Algorithm]

[image: Naive String Matching Algorithm]
[image: Naive String Matching Algorithm]

image4.gif

image5.gif

image6.gif

image7.png
(25)

image8.png

image9.png
(a)

NIL

image10.png
3

NIL

image11.png
N~
(4]
—

image12.jpeg
-

image13.jpeg
i

g

image14.jpeg

image15.png
3,6

27

17,15

6,12

13,15

image16.png

image17.png
NIL NIL

NIL

NIL NIL NIL NIL NIL NIL

image18.png
12

18

1"

17

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png
lpgll = /(px — ¢2)% + (py — @y)?

image25.png
d = min(dl,dr)

°
° ° °
V ° j/.
°
°
° °
°
PL R

image26.png

image27.png

image28.png
Weight Source Destination
i h 9
2 [T
1 a b
6 i 9
7 h i
7 c d
g b c
8 a [
9 d e
10 e T
1 b [
4 d T

image29.png

image30.png

image31.png

image32.png

image33.png
Non-Hamiltonian Hamiltonian

image34.png
57 3) (25 (1)
(7

image35.jpeg

image36.jpeg

image37.png

image38.jpeg
After inserting (2),
H(min) H(min)

image39.jpeg
2

€ dist(i)

Node:

image40.png

image41.png

image42.png

image43.png
7)16

1256”912 | B

image44.png

image45.png
(a) Initial Tree

(b) F deleted: case 1

(c) M deleted: case 2a

(d) G deleted: case 2¢

image46.png
(e) D deleted: case 3b

(f) B deleted: case 3a

image47.png

image48.emf

image49.emf

image50.emf

image51.emf

image52.emf

image53.emf

image54.emf

image55.png

image56.png

image57.png
T = Text

image58.png
So, $=2 is a Valid Shift

S=

image59.png

image60.png
So, $=6 is a Valid Shift

image1.png

image2.gif

image3.gif

